已知:在△ABC中,AB=6,BC=8,AC=10,O為AB邊上的一點,以O為圓心,OA長為半徑作圓交AC于D點,過D作⊙O的切線交BC于E.
(1)若O為AB的中點(如圖1),則ED與EC的大小關系為:ED EC(填“”“”或“”)
(2)若OA<3時(如圖2),(1)中的關系是否還成立?為什么?
(3)當⊙O過BC中點時(如圖3),求CE長.
(1)ED=EC;(2)成立;(3)3
【解析】
試題分析:(1)連接OD,根據切線的性質可得∠ODE=90°,則∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根據勾股定理的逆定理可證得∠ABC=90°,則∠A+∠C=90°,根據圓的基本性質可得∠A=∠ADO,即可得到∠CDE=∠C,從而證得結論;
(2)證法同(1);
(3)根據直角三角形的性質結合圓的基本性質求解即可.
(1)連接OD
∵DE為⊙O的切線
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(2)連接OD
∵DE為⊙O的切線
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(3)CE=3.
考點:圓的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數學 來源: 題型:
1 |
a |
a2-2a+1 |
a |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com