精英家教網 > 初中數學 > 題目詳情

已知:在△ABC中,AB=6,BC=8,AC=10,O為AB邊上的一點,以O為圓心,OA長為半徑作圓交AC于D點,過D作⊙O的切線交BC于E.

(1)若O為AB的中點(如圖1),則ED與EC的大小關系為:ED   EC(填“”“”或“”)

(2)若OA<3時(如圖2),(1)中的關系是否還成立?為什么?

(3)當⊙O過BC中點時(如圖3),求CE長.

 

【答案】

(1)ED=EC;(2)成立;(3)3

【解析】

試題分析:(1)連接OD,根據切線的性質可得∠ODE=90°,則∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根據勾股定理的逆定理可證得∠ABC=90°,則∠A+∠C=90°,根據圓的基本性質可得∠A=∠ADO,即可得到∠CDE=∠C,從而證得結論;

(2)證法同(1);

(3)根據直角三角形的性質結合圓的基本性質求解即可.

(1)連接OD

∵DE為⊙O的切線

∴∠ODE=90°

∴∠CDE+∠ADO=90°

∵AB=6,BC=8,AC=10

∴∠ABC=90°

∴∠A+∠C=90°

∵AO=DO

∴∠A=∠ADO

∴∠CDE=∠C

∴ED=EC;

(2)連接OD

∵DE為⊙O的切線

∴∠ODE=90°

∴∠CDE+∠ADO=90°

∵AB=6,BC=8,AC=10

∴∠ABC=90°

∴∠A+∠C=90°

∵AO=DO

∴∠A=∠ADO

∴∠CDE=∠C

∴ED=EC;

(3)CE=3.

考點:圓的綜合題

點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

25、已知:在△ABC中AB=AC,點D在CB的延長線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網(1)化簡:(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關于x的函數關系式;
②如圖,點D是線段BC上一點,連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數學 來源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點M,ME∥AB交BC于點E,MF∥AC交BC于點F.求證:△MEF的周長等于BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是
x>3

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點E.∠B=38°,∠C=70°.
①求∠DAE的度數;
②試寫出∠DAE與∠B、∠C之間的一般等量關系式(只寫結論)

查看答案和解析>>

同步練習冊答案