如圖:在平面直角坐標(biāo)系中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=3,AD=6,將紙片沿過點M的直線折疊(點M在邊AB上),使點B落在邊AD上的E處(若折痕MN與x軸相交時,其交點即為N),過點E作EQ⊥BC于Q,交折痕于點P。
【小題1】①當(dāng)點分別與AB的中點、A點重合時,那么對應(yīng)的點P分別是點,則(   ,  )(  ,   );②當(dāng)∠OMN=60°時,對應(yīng)的點P是點,求的坐標(biāo);
【小題2】若拋物線,是經(jīng)過(1)中的點、,試求a、b、c的值;
【小題3】在一般情況下,設(shè)P點坐標(biāo)是(x,y),那么y與x之間函數(shù)關(guān)系式還會與(2)中函數(shù)關(guān)系相同嗎(不考慮x的取值范圍)?請你利用有關(guān)幾何性質(zhì)(即不再用、、三點)求出y與x之間的關(guān)系來給予說明.

【小題1】(0,), 當(dāng)M與A重合時,Q、P與N重合, ∴(3,0),1).
【小題2】a=-,b=0,c=.
【小題3】解析:
解:(1)當(dāng)M與AB的中點重合時,B與A重合,即E與A重合,則點P為OA的中點,


即:(0,), 當(dāng)M與A重合時,Q、P與N重合, ∴(3,0)
當(dāng)∠OMN=60°時,∠MNO=30°,則∠QNE=60°,在Rt△QNE中,QN===,在Rt△PQN中,PQ=1,又∵∠MEN=90°,∠MEP=90°-30°=60°,∠MOP=∠MEP=60°,
則∠POQ=30°,則OP=PN,OQ=QN=,∴,1). ………………………4分
(2)∵拋物線與y軸的交點坐標(biāo)為(0,),∴c=,
,
∴a=-,b=0,c=.  ……………………………8分
(3)相同.連結(jié)OP,根據(jù)對折的對稱性,△PON≌△PEN,
則PE=OP,OP+PQ=EQ=AB=3.在Rt△OPQ中,
 ,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案