【題目】半徑為1的球O內(nèi)有一個內(nèi)接正三棱柱,當(dāng)正三棱柱的側(cè)面積最大時,球的表面積與該正三棱柱的側(cè)面積之差是 .
【答案】4π﹣3
【解析】解:如圖所示,
設(shè)球心為O點,上下底面的中心分別為O1 , O2 .
設(shè)正三棱柱的底面邊長與高分別為x,h.
則O2A= x,
在Rt△OAO2中, =1,
化為h2=4﹣ x2 .
∵S側(cè)=3xh,
∴S側(cè)2=9x2h2=12x2(3﹣x2) =27.
當(dāng)且僅當(dāng)x= 時取等號,S側(cè)=3 .
∴球的表面積與該正三棱柱的側(cè)面積之差是4π﹣3 ,
故答案為:4π﹣3 .
如圖所示,設(shè)球心為O點,上下底面的中心分別為O1 , O2 . 設(shè)正三棱柱的底面邊長與高分別為x,h.可得O2A= x.在Rt△OAO2中,利用勾股定理可得 =1,由于S側(cè)=3xh,可得S側(cè)2=9x2h2=12x2(3﹣x2) ,即可得出.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樂平街上新開張了一家“好又多”超市,這個星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時間t(分鐘)與距離s(米)之間關(guān)系的一幅圖:①圖中反映了哪兩個變量之間的關(guān)系?超市離家多遠?②張明從家出發(fā)到達超市用了多少時間?從超市返回家花了多少時間?
③張明從家出發(fā)后20分鐘到30分鐘內(nèi)可能在做什么?④張明從家到超市時的平均速度是多少?返回時的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,D是由x軸和曲線y=f(x)及該曲線在點(1,0)處的切線所圍成的封閉區(qū)域,則z=x2+y2+2x+2y在D上的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機抽查了男女各30人,統(tǒng)計其網(wǎng)購金額,得到如下頻率分布直方圖:
網(wǎng)購達人 | 非網(wǎng)購達人 | 合計 | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計 | 60 |
若網(wǎng)購金額超過2千元的顧客稱為“網(wǎng)購達人”,網(wǎng)購金額不超過2千元的顧客稱為“非網(wǎng)購達人”.
(Ⅰ)若抽取的“網(wǎng)購達人”中女性占12人,請根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認為“網(wǎng)購達人”與性別有關(guān)?
(Ⅱ)該營銷部門為了進一步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取3人進行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達人”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f(x0)=3,x0∈( , ),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的焦距為2,點Q( ,0)在直線l:x=3上.
(1)求橢圓C的標準方程;
(2)若O為坐標原點,P為直線l上一動點,過點P作直線與橢圓相切點于點A,求△POA面積S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 內(nèi)有一點M(2,1),過M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點,且滿足 (其中λ>0,且λ≠1),若λ變化時,AB的斜率總為 ,則橢圓E的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯誤的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點為F(1,0),且經(jīng)過點
(1)求橢圓P的方程;
(2)已知正方形ABCD的頂點A,C在橢圓P上,頂點B,D在直線7x﹣7y+1=0上,求該正方形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com