將一張矩形紙按如圖所示的方法折疊:

回答下列問題:
(1)圖④中∠AEF是多少度?為什么?
(2)若AB=4,AD=6,CF=2,求BE的長.

解:(1)∠AEF=90°
由題意知2∠AEB+2∠CEF=180°,
∴∠AEB+∠CEF=90°,
∴∠AEF=90°.

(2)設(shè)BE=x,∵∠AEB+∠CEF=90°,又∠BAE+∠AEB=90°
∴∠BAE=∠CEF
又∠B=∠C=90°,∴△ABE∽△ECF,∴,
即4×2=x(6-x),整得,x2-6x+8=0,解得x1=2,x2=4,
故BE長為2或4.
若用其他做法可參照此標準評分.
分析:(1)根據(jù)折疊可以得到重合的兩個角相等,則∠AEF是平角的一半;
(2)根據(jù)兩角對應(yīng)相等,得△ABE∽△ECF,根據(jù)相似三角形的性質(zhì),即可求得BE的長.
點評:本題考查翻折變換的知識,綜合運用了折疊的性質(zhì)、相似三角形的判定和性質(zhì),有一定難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

將一張矩形紙按如圖所示的方法折疊:
精英家教網(wǎng)
回答下列問題:
(1)圖④中∠AEF是多少度?為什么?
(2)若AB=4,AD=6,CF=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衢州)課本中,把長與寬之比為
2
的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.
請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=
2
,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(浙江衢州卷)數(shù)學(帶解析) 題型:解答題

課本中,把長與寬之比為的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.

(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.

請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:山東省期末題 題型:解答題

將一張矩形紙按如圖所示的方法折疊:
回答下列問題:
(1)圖④中∠AEF是多少度?為什么?
(2)若AB=4,AD=6,CF=2,求BE的長。

查看答案和解析>>

同步練習冊答案