【題目】已知:如圖,AB=AD,∠1=∠2,以下條件中,不能推出△ABC≌△ADE的是( )

A. AE=AC B. ∠B=∠D C. BC=DE D. ∠C=∠E

【答案】C

【解析】根據(jù)∠1=∠2可利用等式的性質(zhì)得到∠BAC=∠DAE,然后再根據(jù)所給的條件利用全等三角形的判定定理進行分析即可.

解:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE,
A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此選項不合題意;
B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此選項不合題意;
C、添加BC=DE,不能判定△ABC≌△ADE,故此選項符合題意;
D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此選項不合題意;
故選C.

“點睛”本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家趙爽的勾股方圓圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么(a+b)2的值為(

A.49 B.25 C.13 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC=6,BD=8,點E、F分別是邊AB、BC的中點,點P在AC上運動,在運動過程中,存在PE+PF的最小值,則這個最小值是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個正多邊形的內(nèi)角是140°,則這個正多邊形的邊數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點A(﹣1,a)和點B(4,b)在直線y=﹣x+m上,則a與b的大小關(guān)系是( )
A.a=b
B.a>b
C.a<b
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2=x的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于不等式組 下列說法正確的是( 。

A. 此不等式組無解 B. 此不等式組有7個整數(shù)解

C. 此不等式組的負(fù)整數(shù)解是﹣3,2,1 D. 此不等式組的解集是x≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=∠E=90°,AB=a,DE=b,AC=CD,∠D=60°,∠A=30°,則BE=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x(x﹣2)=x的根是_______________

查看答案和解析>>

同步練習(xí)冊答案