【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點(diǎn)D的說法正確的是( )
甲:點(diǎn)D在第一象限
乙:點(diǎn)D與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱
丙:點(diǎn)D的坐標(biāo)是(﹣2,1)
丁:點(diǎn)D與原點(diǎn)距離是
A.甲乙
B.丙丁
C.甲丁
D.乙丙

【答案】B
【解析】解:∵A(m,n),C(﹣m,﹣n),
∴點(diǎn)A和點(diǎn)C關(guān)于原點(diǎn)對(duì)稱,
∵四邊形ABCD是平行四邊形,
∴D和B關(guān)于原點(diǎn)對(duì)稱,
∵B(2,﹣1),
∴點(diǎn)D的坐標(biāo)是(﹣2,1),
∴點(diǎn)D到原點(diǎn)的距離= =
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的理解,了解兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名維修工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為 . (Ⅰ)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為x,求x的分布列;
(Ⅱ)該廠至少有多少名維修工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(Ⅲ)已知一名維修工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位維修工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬元的利潤(rùn),否則將不產(chǎn)生利潤(rùn),若該廠現(xiàn)有2名維修工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +a(x﹣1)﹣2.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)若對(duì)任意x∈(0,1)∪(1,+∞),不等式 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示

A

B

進(jìn)價(jià)(萬元/套)

1.5

1.2

售價(jià)(萬元/套)

1.65

1.4

該商場(chǎng)計(jì)劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤(rùn)9萬元.
(1)該商場(chǎng)計(jì)劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度的一半為半徑作弧,相交于點(diǎn)E,F(xiàn),過點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連接CD,則△ACD的周長(zhǎng)為(
A.13
B.17
C.18
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旭日商場(chǎng)銷售A,B兩種品牌的鋼琴,這兩種鋼琴的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)(萬元/.套)

1.5

1.2

售價(jià)(萬元/套)

1.65

1.4

該商場(chǎng)計(jì)劃購進(jìn)兩種鋼琴若干套,共需66萬元,全部銷售后可獲毛利潤(rùn)9萬元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購進(jìn)A,B兩種品牌的鋼琴各多少套?
(2)通過市場(chǎng)調(diào)查,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種鋼琴的購進(jìn)數(shù)量,增加B種鋼琴的購進(jìn)數(shù)量,已知B種鋼琴增加的數(shù)量是A種鋼琴減少數(shù)量的1.5倍,若用于購進(jìn)這兩種鋼琴的總資金不超過69萬元,問A種鋼琴購進(jìn)數(shù)量至多或減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車速度為200千米/小時(shí),行駛180千米后,中途要?啃熘10分鐘,若動(dòng)車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動(dòng)車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足為O,AD∥BC,且AB=5,BC=12,則AD的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案