精英家教網(wǎng)如圖,直線l經(jīng)過點M(3,0),且平行于y軸,與拋物線y=ax2交于點N,若S△OMN=9,則a的值是(  )
A、
2
3
B、-
2
3
C、
1
3
D、-
1
3
分析:由點M的坐標(biāo)得到OM=3,由直線l經(jīng)過點M(3,0),且平行于y軸,可知點N的橫坐標(biāo)為3,代入拋物線y=ax2,求得點N的縱坐標(biāo),即求得MN的長度,再代入S△OMN=9,即可求得a的值.
解答:解:∵直線l經(jīng)過點M(3,0),且平行于y軸,與拋物線y=ax2交于點N,
∴點N的橫坐標(biāo)為3,
代入拋物線方程得:y=9a,即MN=-9a.
∵S△OMN=
1
2
OM•MN=9,OM=3,MN=-9a,
解得:a=-
2
3

故選:B.
點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有交點坐標(biāo)和三角形的面積求法.由已知點通過找到中間量來求得未知點從而解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過點A(4,0)和點B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點P,若△AOP的面積為
92
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l經(jīng)過點A(-3,1)、B(0,-2),將該直線向右平移2個單位得到直線l′.
(1)在圖中畫出直線l′的圖象;
(2)求直線l′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,直線L經(jīng)過點A(0,-1),且與雙曲線c:y=
mx
交于點B(2,1).
(1)求雙曲線c及直線L的解析式;
(2)已知P(a-1,a)在雙曲線c上,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天河區(qū)一模)如圖,直線l經(jīng)過點A(1,0),且與曲線y=
m
x
(x>0)交于點B(2,1).過點P(p,p-1)(p≥2)作x軸的平行線分別交曲線y=
m
x
(x>0)和y=-
m
x
(x<0)于M,N兩點.
(1)求m的值及直線l的解析式;
(2)是否存在實數(shù)p,使得S△AMN=4S△APM?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案