【題目】在平面直角坐標系xOy中,已知點A01),B1,2),點Px軸上運動,當點PAB兩點距離之差的絕對值最大時,點P的坐標是_______

【答案】(﹣1,0

【解析】分析:由三角形兩邊之差小于第三邊可知,

AB、P三點不共線時,由三角形三邊關(guān)系|PA﹣PB|AB;

A、B、P三點共線時,∵A01),B1,2)兩點都在x軸同側(cè),∴|PA﹣PB|=AB。

∴|PA﹣PB|≤AB

本題中當點PA、B兩點距離之差的絕對值最大時,點P在直線AB上。

設(shè)直線AB的解析式為y=kx+b,

A0,1),B1,2),,解得。

直線AB的解析式為y=x+1。

y=0,得0=x+1,解得x=﹣1。

P的坐標是(﹣1,0)。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的中點,過點垂直于點,交的延長線于點中點,,邊上一點,連接,且

(1),求的長度;

(2)求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長為60cm,寬為x(cm)的大長方形被分割為7小塊,除陰影 A, B外,其余5塊是形狀、大小完全相同的小長方形,其較短一邊長為 y (cm)

(1)填空:從圖可知,每個小長方形較長的一邊長是_________cm (用含y的代數(shù)式表示)

(2)分別求出陰影 A,B的面積,并計算陰影 A,B的面積差?(用含x,y的式子表示)

(3)y=10時,陰影 A與陰影 B的面積差會隨著x的變化而變化嗎?請你作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD平分∠ABC,DEABE,DFBCF,AB12BC18

1)求SABDSBCD的值;

2)若SABC36,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長25米)的空地上修建一個矩形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻,如果用60m長的籬笆圍成中間有一道籬笆的養(yǎng)雞場,設(shè)養(yǎng)雞場平行于墻的一邊BC的長為x(m),養(yǎng)雞場的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)養(yǎng)雞場的面積能達到300m2嗎?若能,求出此時x的值,若不能,說明理由;

(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當x取何值時,養(yǎng)雞場的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(3,2),B(4,3),C(1,1).

(1)在圖中作出ABC關(guān)于y軸對稱的;

(2)寫出點,,的坐標(直接寫答案): ___;___;___

(3)的面積為___;

(4)y軸上畫出點P,使PB+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=8,BC=6,以EF為直徑的半圓M如圖所示位置擺放,點E與點A重合,點F與點B重合,點F從點B出發(fā),沿射線BC以每秒1個單位長度的速度運動,點E隨之沿AB下滑,并帶動半圓M在平面滑動,設(shè)運動時間t(t0),當E運動到B點時停止運動.

發(fā)現(xiàn):M到AD的最小距離為   ,M到AD的最大距離為   

思考:在運動過程中,當半圓M與矩形ABCD的邊相切時,求t的值;

求從t=0到t=4這一時間段M運動路線長;

探究:當M落在矩形ABCD的對角線BD上時,求SEBF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究

(1)如圖①,已知正方形ABCD的邊長為4.點MN分別是邊BCCD上兩點,且BMCN,連接AMBN,交于點P.猜想AMBN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖②,已知正方形ABCD的邊長為4.點MN分別從點BC同時出發(fā),以相同的速度沿BC、CD方向向終點CD運動.連接AMBN,交于點P,求APB周長的最大值;

問題解決

(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點MN分別從點B、C同時出發(fā),以相同的速度沿BCCA向終點CA運動.連接AMBN,交于點P.求APB周長的最大值.

查看答案和解析>>

同步練習冊答案