【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=,小亮通過觀察得出了下面四條信息:①,②abc<0,③4a+2b+c>0,④2a+3b=0.你認(rèn)為其中正確的有_________________.
A.①②B.②④C.①③D.③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若點P是BF的中點,連接PC,PE.
(1) 如圖1,若點E,F分別落在邊AB,AC上,求證:PC=PE;
(2) 如圖2,把圖1中的△AEF繞著點A順時針旋轉(zhuǎn),當(dāng)點E落在邊CA的延長線上時,探索PC與PE的數(shù)量關(guān)系,并說明理由.
(3) 如圖3,把圖2中的△AEF繞著點A順時針旋轉(zhuǎn),點F落在邊AB上.其他條件不變,問題(2)中的結(jié)論是否發(fā)生變化?如果不變,請加以證明;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩點的坐標(biāo)分別為(―2,0),(0,1),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是( )
A. 4 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABP的斜邊AB=2,點M、N在斜邊AB上.若△PMN是等腰三角形且底角正切值為2,則MN=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點C坐標(biāo)為(﹣1,0),tan∠ACO=2.一次函數(shù)y=kx+b的圖象經(jīng)過點B、C,反比例函數(shù)y=的圖象經(jīng)過點B.
(1)求一次函數(shù)關(guān)系式和反比例函數(shù)的關(guān)系式;
(2)當(dāng)x<0時,kx+b﹣<0的解集為 ;
(3)若x軸上有兩點E、F,點E在點F的左邊,且EF=1.當(dāng)四邊形ABEF周長最小時,請直接寫出點E的橫坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南寧市金陵鎮(zhèn)三聯(lián)村無公害蔬菜基地有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
說明:不同種植戶種植的同類蔬菜每畝平均收入相等.
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)某種植戶準(zhǔn)備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=∠DCE=90°,連接BE,AD,兩條線段所在的直線交于點P.
(1)線段BE與AD有何數(shù)量關(guān)系和位置關(guān)系,請說明理由.
(2)若已知BC=12,DC=5,△DEC繞點C順時針旋轉(zhuǎn),
①如圖2,當(dāng)點D恰好落在BC的延長線上時,求AP的長;
②在旋轉(zhuǎn)一周的過程中,設(shè)△PAB的面積為S,求S的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+c與x軸交于點A(﹣4,0),與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過點A,C.
(1)求拋物線的解析式;
(2)已知點P是拋物線上的一個動點,并且點P在第二象限內(nèi),過動點P作PE⊥x軸于點E,交線段AC于點D.
①如圖1,過D作DF⊥y軸于點F,交拋物線于M,N兩點(點M位于點N的左側(cè)),連接EF,當(dāng)線段EF的長度最短時,求點P,M,N的坐標(biāo);
②如圖2,連接CD,若以C,P,D為頂點的三角形與△ADE相似,求△CPD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,,與軸交于點.若點,同時從點出發(fā),都以每秒個單位長度的速度分別沿,邊運動,其中一點到達端點時,另一點也隨之停止運動.
(1)直接寫出二次函數(shù)的解析式;
(2)當(dāng),運動到秒時,將△APQ沿翻折,若點恰好落在拋物線上點處,求出點坐標(biāo);
(3)當(dāng)點運動到點時,點停止運動,這時,在軸上是否存在點,使得以,,為頂點的三角形為等腰三角形?若存在,請直接寫出 點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com