如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

(1)點(diǎn)B的坐標(biāo)為(0,2);(2)DE=4;(3)m的值為8或-8..

解析試題分析:(1)將m=2代入原式,得到二次函數(shù)的頂點(diǎn)式,據(jù)此即可求出B點(diǎn)的坐標(biāo);
(2)延長(zhǎng)EA,交y軸于點(diǎn)F,證出△AFC≌△AED,進(jìn)而證出△ABF∽△DAE,利用相似三角形的性質(zhì),求出DE=4;
(3)①根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo),得到,,將代入,即可求出二次函數(shù)的表達(dá)式;
②作PQ⊥DE于點(diǎn)Q,則△DPQ≌△BAF,然后分(如圖1)和(圖2)兩種情況解答.
試題解析:(1)當(dāng)m=2時(shí),y=(x-2)2+1,
把x=0代入y=(x-2)2+1,得:y=2,
∴點(diǎn)B的坐標(biāo)為(0,2).
(2)延長(zhǎng)EA,交y軸于點(diǎn)F,
∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED,
∴AF=AE,
∵點(diǎn)A(m,-m2+m),點(diǎn)B(0,m),
∴AF=AE=|m|,BF=m-(-m2+m)=m2
∵∠ABF=90°-∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,

即:
∴DE=4.
(3)①∵點(diǎn)A的坐標(biāo)為(m,-m2+m),
∴點(diǎn)D的坐標(biāo)為(2m,-m2+m+4),
∴x=2m,y=-m2+m+4,
∴y=-•()2++4,
∴所求函數(shù)的解析式為:y=-x2++4,
②作PQ⊥DE于點(diǎn)Q,則△DPQ≌△BAF,

(Ⅰ)當(dāng)四邊形ABDP為平行四邊形時(shí)(如圖1),
點(diǎn)P的橫坐標(biāo)為3m,點(diǎn)P的縱坐標(biāo)為:(-m2+m+4)-(m2)=-m2+m+4,
把P(3m,-m2+m+4)的坐標(biāo)代入y=-x2++4得:-m2+m+4=-×(3m)2+×(3m)+4,
解得:m=0(此時(shí)A,B,D,P在同一直線上,舍去)或m=8.
(Ⅱ)當(dāng)四邊形ABPD為平行四邊形時(shí)(如圖2),
點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P的縱坐標(biāo)為:(-m2+m+4)+(m2)=m+4,
把P(m,m+4)的坐標(biāo)代入y=-x2++4得:
m+4=-m2+m+4,
解得:m=0(此時(shí)A,B,D,P在同一直線上,舍去)或m=-8,
綜上所述:m的值為8或-8.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(1,2).過(guò)點(diǎn)A作AC∥y軸,AC=1(點(diǎn)C位于點(diǎn)A的下方),過(guò)點(diǎn)C作CD∥x軸,與函數(shù)的圖象交于點(diǎn)D,過(guò)點(diǎn)B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知反比例函數(shù)y=(m為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(-1,6).

(1)求m的值;
(2)如圖,過(guò)點(diǎn)A作直線AC與函數(shù)y=的圖象交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A(-4,2)、B( n,-4)是一次函數(shù)的圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn).

(1)求此反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:正比例函數(shù)的圖象于反比例函數(shù)的圖象交于點(diǎn)M(a,1),MN⊥x軸于點(diǎn)N(如圖),若△OMN的面積等于2,求這兩個(gè)函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)M,N,已點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1.

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)當(dāng)y1≥3時(shí),求x的取值范圍;
(3)求使y1>y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,制作一種產(chǎn)品的同時(shí),需將原材料加熱,設(shè)該材料溫度為y℃,從加熱開(kāi)始計(jì)算的時(shí)間為x分鐘.據(jù)了解,該材料在加熱過(guò)程中溫度y與時(shí)間x成一次函數(shù)關(guān)系,已知該材料在加熱前的溫度為l5℃,加熱5分鐘使材料溫度達(dá)到60℃時(shí)停止加熱,停止加熱后,材料溫度逐漸下降,這時(shí)溫度y與時(shí)間x成反比例函數(shù)關(guān)系.

(1)分別求出該材料加熱和停止加熱過(guò)程中y與x的函數(shù)關(guān)系(要寫(xiě)出x的取值范圍);
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時(shí)間內(nèi),需要對(duì)該材料進(jìn)行特殊處理,那么對(duì)該材料進(jìn)行特殊處理所用的時(shí)間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)的圖象和矩形ABCD的第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6) .

(1)直接寫(xiě)出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某汽車油箱的容積為70升,小王把油箱注滿油后準(zhǔn)備駕駛汽車從縣城到300千米外的省城接待客人,在接到客人后立即按原路返回,請(qǐng)回答下列問(wèn)題:
(1)油箱注滿油后,汽車能夠行駛的總路程y(單位:千米)與平均耗油量x(單位:升/千米)之間有怎樣的函數(shù)關(guān)系?
(2)如果小王以平均每千米耗油0.1升的速度駕駛汽車到達(dá)省城,在返程時(shí)由于下雨,小王降低了車速,此時(shí)每行駛1千米的耗油量增加了一倍,如果小王一直以此速度行駛,郵箱里的油是否夠回到縣城?如果不夠用,至少還需加多少油?

查看答案和解析>>

同步練習(xí)冊(cè)答案