【題目】如圖,四邊形ABCD中,∠A=∠B=90度,E是AB上一點,且AE=BC,∠1=∠2
(1)Rt△ADE與Rt△BEC全等嗎?請說明理由;
(2)證明:AB=AD+BC;
(3)△CDE是不是直角三角形?請說明理由.
【答案】(1)Rt△ADE與Rt△BEC全等 ,證明見解析;(2)證明見解析;(3)△CDE是直角三角形,理由見解析.
【解析】
(1)先根據等角對等邊證得DE=CE,再根據HL即可證明結論;
(2)由(1)的結論可得AD=BE,再結合已知AE=BC即可證得結論;
(3)由(1)的結論可得∠AED=∠BCE,再利用角的等量代換即可求出∠DEC的度數,然后即可進行判斷.
(1)Rt△ADE與Rt△BEC全等 ,
證明:∵∠1=∠2,
∴DE=CE,
∵ ∠A=∠B=90 °,AE=BC,
∴ Rt△ADE≌Rt△BEC(HL);
(2)證明,∵Rt△ADE≌Rt△BEC,
∴AD=BE,
∵AE=BC,
∴AE+EB=AD+BC,
即AB=AD+BC.
(3)解:∵Rt△ADE≌Rt△BEC,
∴ ∠AED=∠BCE,
∵ ∠AED+∠BEC=∠BCE+∠BEC=90°,
∴∠DEC=90°.
∴△CDE是直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD、CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD、CD、BE、CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接CD、BE、CE、BF、CF;…,依次規(guī)律,第200個圖形中有全等三角形的對數是( )
A.200對B.399對C.603對D.20100對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD的四邊都相等,等邊△AEF的頂點E、F分別在BC、CD上,且AE=AB,則∠C=( 。
A. 100° B. 105° C. 110° D. 120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里有4個標有1,2,3,4的小球,它們的形狀、大小完全相同.小明從布袋里隨機取出一個小球,記下數字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個游戲公平嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與軸交于點,與正比例函數的圖象相交于點,且.
(1)分別求出這兩個函數的解析式;
(2)求的面積;
(3)點在軸上,且是等腰三角形,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=10,S△ABC =25,∠BAC的平分線交BC于點D,點M,N分別是AD和AB上的動點,則BM+MN的最小值是( )
A. 4 B. C. 5 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在北海市創(chuàng)建全國文明城活動中,需要30名志愿者擔任“講文明樹新風”公益廣告宣傳工作,其中男生18人,女生12人.
(1)若從這30人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準備以游戲的方式決定由誰擔任,游戲規(guī)則如下:將四張牌面數字分別為2,3,4,5的撲克牌洗勻后,數字朝下放于桌面,從中任取2張,若牌面數字之和為偶數,則甲擔任,否則乙擔任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com