【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過(guò)點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長(zhǎng)線上,且GA=GE.

(1)求證:AG與⊙O相切.

(2)若AC=6,AB=8,BE=3,求線段OE的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2

【解析】

試題(1)連接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,進(jìn)一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;

2BC為直徑得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EFBF的長(zhǎng),進(jìn)一步在△OEF中利用勾股定理得出OE的長(zhǎng)即可.

試題解析:(1)證明:如圖,

連接OA,

∵OA=OB,GA=GE

∴∠ABO=∠BAO,∠GEA=∠GAE

∵EF⊥BC,

∴∠BFE=90°,

∴∠ABO+∠BEF=90°

∵∠BEF=∠GEA,

∴∠GAE=∠BEF

∴∠BAO+∠GAE=90°,

AG⊙O相切.

2)解:∵BC為直徑,

∴∠BAC=90°,AC=6AB=8,

∴BC=10

∵∠EBF=∠CBA,∠BFE=∠BAC,

∴△BEF∽△BCA,

∴EF=18,BF=24

∴0F=0B-BF=5-24=26,

∴OE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為( 。

A. B. C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,放置的△OAB1,B1A1B2,B2A2B3,…都是邊長(zhǎng)為2的等邊三角形,邊AOy軸上,點(diǎn)B1、B2、B3都在直線y=x上,則點(diǎn)A2018的坐標(biāo)為(  )

A. (2018,2020) B. (2018,2018) C. (2020,2020) D. (2018,2020)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,AB=CD,延長(zhǎng)線段CB到E,使BE=AD,連接AE、AC.

1求證:ABE≌△CDA;

2DAC=40°,求EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x-2,直線l1與x軸交于點(diǎn)D.直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1,l2交于點(diǎn)C(m,2).

(1)求點(diǎn)D,點(diǎn)C的坐標(biāo);

(2)求直線l2對(duì)應(yīng)的函數(shù)表達(dá)式;

(3)求△ADC的面積;

(4)利用函數(shù)圖象寫出關(guān)于x,y的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)DE分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)MP,N分別為DEDC,BC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說(shuō)明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列一段話,并解決后面的問(wèn)題 .觀察下面一例數(shù):

12,48,……

我們發(fā)現(xiàn),這一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于2 .

一般地,如果一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù),這一列數(shù)就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比 .

1)等比數(shù)列5,-15,45,……的第4項(xiàng)是 ;

2)如果一列數(shù),,,……是等比數(shù)列,且公比為q,那么根據(jù)上述的規(guī)定,有

,,,……

所以

,

……

.(用q的代數(shù)式表示)

3)一個(gè)等比數(shù)列的第2項(xiàng)是10,第3項(xiàng)是20,求它的第1項(xiàng)與第4項(xiàng) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCDEC是兩個(gè)大小不同的等腰直角三角形.

(1)如圖所示,連接AE,DB,試判斷線段AEDB的數(shù)量和位置關(guān)系,并說(shuō)明理由;

(2)如圖所示,連接DB,將線段DBD點(diǎn)順時(shí)針旋轉(zhuǎn)90°DF,連接AF,試判斷線段DEAF的數(shù)量和位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案