【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線的對(duì)稱(chēng)軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;③a﹣b+c≥0; ④ 的最小值為3.其中正確的是( )
A.①②③
B.②③④
C.①③④
D.①②③④
【答案】D
【解析】解:∵b>a>0, ∴拋物線的對(duì)稱(chēng)軸x=﹣ <0,所以①正確;
∵拋物線與x軸最多有一個(gè)交點(diǎn),
而拋物線開(kāi)口向上,
∴關(guān)于x的方程ax2+bx+c=﹣2無(wú)實(shí)數(shù)根,所以②正確;
∵a>0及拋物線與x軸最多有一個(gè)交點(diǎn),
∴x取任何值時(shí),y≥0,
∴當(dāng)x=﹣1時(shí),a﹣b+c≥0;所以③正確;
當(dāng)x=﹣2時(shí),y=4a﹣2b+c≥0,
∴a+b+c≥3b﹣3a,
即a+b+c≥3(b﹣a),
而b>a>0,
∴ ≥3,所以④正確.
故選D.
利用拋物線的對(duì)稱(chēng)軸方程x=﹣ <0可對(duì)①進(jìn)行判斷;拋物線與x軸最多有一個(gè)交點(diǎn)且拋物線開(kāi)口向上,則y≥0,則可對(duì)②③進(jìn)行判斷;當(dāng)x=﹣2時(shí),y=4a﹣2b+c≥0,變形得到 a+b+c≥3(b﹣a),則利用b>a>0得到 ≥3,則可對(duì)D進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是平行四邊形,對(duì)角線OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線y= 和y= 的一支上,分別過(guò)點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
① = ;
②陰影部分面積是 (k1+k2);
③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱(chēng),也關(guān)于y軸對(duì)稱(chēng).
其中正確的結(jié)論是(把所有正確的結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點(diǎn)處作業(yè),測(cè)得俯角為30°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點(diǎn)處測(cè)得俯角為45°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出,請(qǐng)通過(guò)計(jì)算判斷“蛟龍”號(hào)能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù) ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是線段AB上一點(diǎn),AB=4cm,AO=1cm,若線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°到線段A′B′的位置,則線段AB在旋轉(zhuǎn)過(guò)程中掃過(guò)的圖形的面積為 cm2 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,M、N分別是邊AB、AC的中點(diǎn),在射線MN上取點(diǎn)D,使∠ADM=∠BAC,連接AD.
(1)如圖1,當(dāng)BC=3時(shí),求DM的長(zhǎng).
(2)如圖2,以AB為底邊在AB的左側(cè)作等腰△ABE,并且使頂角∠AEB=2∠BAC,連接EM.
①判斷四邊形AEMD的形狀,并說(shuō)明理由.
②設(shè)BC=x(x>0),四邊形AEMD的面積為y,試用含x的式子表示y,并說(shuō)明是否存在x的值,使得四邊形AEMD的面積等于△ABC的面積?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)公路的節(jié)水意識(shí),合理利用水資源,某市對(duì)居民用水實(shí)行階梯水價(jià),居民家庭每月用水量劃分為兩個(gè)階梯,一、二階梯用水的單價(jià)之比等于1:2,如圖折線表示實(shí)行階梯水價(jià)后每月水費(fèi)y(元)與用水量x(m3)之間的函數(shù)關(guān)系,其中射線AB表示第二級(jí)階梯時(shí)y與x之間的函數(shù)關(guān)系.
(1)寫(xiě)出點(diǎn)B的實(shí)際意義;
(2)求射線AB所在直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)寫(xiě)出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,D為 的中點(diǎn),連接OD交弦AC于點(diǎn)F,過(guò)點(diǎn)D作DE∥AC,交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知λ∈R,函數(shù)f(x)=ex﹣ex﹣λ(xlnx﹣x+1)的導(dǎo)數(shù)為g(x).
(1)求曲線y=f(x)在x=1處的切線方程;
(2)若函數(shù)g(x)存在極值,求λ的取值范圍;
(3)若x≥1時(shí),f(x)≥0恒成立,求λ的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com