(2007•重慶)已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為A(10,0)、C(0,4),點D是OA的中點,點P在BC邊上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為   
【答案】分析:題中沒有指明△ODP的腰長與底分別是哪個邊,故應該分情況進行分析,從而求得點P的坐標.
解答:解:(1)OD是等腰三角形的底邊時,P就是OD的垂直平分線與CB的交點,此時OP=PD≠5;
(2)OD是等腰三角形的一條腰時:若點O是頂角頂點時,P點就是以點O為圓心,以5為半徑的弧與CB的交點,
在直角△OPC中,CP===3,則P的坐標是(3,4).
若D是頂角頂點時,P點就是以點D為圓心,以5為半徑的弧與CB的交點,
過D作DM⊥BC于點M,
在直角△PDM中,PM==3,
當P在M的左邊時,CP=5-3=2,則P的坐標是(2,4);
當P在M的右側時,CP=5+3=8,則P的坐標是(8,4).
故P的坐標為:(3,4)或(2,4)或(8,4).
點評:此題主要考查等腰三角形的性質及勾股定理的運用,注意正確地進行分類,考慮到所有的可能情況是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年中考數(shù)學預考題(解析版) 題型:解答題

(2007•重慶)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年陜西省寶雞市金臺區(qū)一模試卷(金臺中學 楊宏舉)(解析版) 題型:解答題

(2007•重慶)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省孝感市市直五校聯(lián)考中考數(shù)學試卷(航天中學 鄧鳴鳳、張海濱)(解析版) 題型:解答題

(2007•重慶)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省三明市大田二中自主招生數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2007•重慶)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

科目:初中數(shù)學 來源:2007年重慶市中考數(shù)學試卷(解析版) 題型:解答題

(2007•重慶)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為,對稱軸公式為x=-

查看答案和解析>>

同步練習冊答案