如圖4,將矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上F點處,已知CE=3cm,AB=8cm,則圖中陰影部分面積為           cm2。

 

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,某校計劃將一塊形狀為銳角三角形ABC的空地進行生態(tài)環(huán)境改造.已知△ABC的邊BC長120米,高AD長80米.學校計劃將它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其中兩個頂點H、G分別在邊AB、AC上.現(xiàn)計劃在△AHG上種草,在△BHE、△GFC上都種花,在矩形EFGH上興建噴泉.當FG長為多少米時,種草的面積與種花的面積相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•昌平區(qū)二模)(1)如圖1,以AC為斜邊的Rt△ABC和矩形HEFG擺放在直線l上(點B、C、E、F在直線l上),已知BC=EF=1,AB=HE=2.△ABC沿著直線l向右平移,設CE=x,△ABC與矩形HEFG重疊部分的面積為y(y≠0).當x=
35
時,求出y的值;
(2)在(1)的條件下,如圖2,將Rt△ABC繞AC的中點旋轉180°后與Rt△ABC形成一個新的矩形ABCD,當點C在點E的左側,且x=2時,將矩形ABCD繞著點C順時針旋轉α角,將矩形HEFG繞著點E逆時針旋轉相同的角度.若旋轉到頂點D、H重合時,連接AG,求點D到AG的距離;
(3)在(2)的條件下,如圖3,當α=45°時,設AD與GH交于點M,CD與HE交于點N,求證:四邊形MHND為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線能夠將一個封閉圖形的周長和面積同時平分,那么就把這條直線稱作這個封閉圖形的二分線.

(1)請在圖1的三個圖形中,分別作一條二分線.
(2)請你在圖2中用尺規(guī)作圖法作一條直線 l,使得它既是矩形的二分線,又是圓的二分線.(保留作圖痕跡,不寫畫法).
(3)如圖3,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在過AB邊上的點P的二分線?若存在,求出AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年北京市昌平區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(1)如圖1,以AC為斜邊的Rt△ABC和矩形HEFG擺放在直線l上(點B、C、E、F在直線l上),已知BC=EF=1,AB=HE=2.△ABC沿著直線l向右平移,設CE=x,△ABC與矩形HEFG重疊部分的面積為y(y≠0).當x=時,求出y的值;
(2)在(1)的條件下,如圖2,將Rt△ABC繞AC的中點旋轉180°后與Rt△ABC形成一個新的矩形ABCD,當點C在點E的左側,且x=2時,將矩形ABCD繞著點C順時針旋轉α角,將矩形HEFG繞著點E逆時針旋轉相同的角度.若旋轉到頂點D、H重合時,連接AG,求點D到AG的距離;
(3)在(2)的條件下,如圖3,當α=45°時,設AD與GH交于點M,CD與HE交于點N,求證:四邊形MHND為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖2,將矩形ABCD沿對角線BD對折,使點C落在C′處,BC′交AD于F,下列不

成立的是                                                               (    )

  A.AF=C′F             B.BF=DF  

  C.∠BDA=∠ADC′      D.∠ABC′=∠ADC′

查看答案和解析>>

同步練習冊答案