精英家教網 > 初中數學 > 題目詳情
(1)如圖1,在△ABC中,D、E是BC邊上的兩點,請你從下面三項中選出兩個作為條件,另一個作為結論,寫出真命題,并加以證明.
①AB=AC;②AD=AE;③BD=CE.
(2)如圖2,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.
①求證:DE為⊙O的切線;
②若⊙O的半徑為5,∠BAC=60°,求DE的長.

【答案】分析:(1)由已知設①AB=AC,②AD=AE,則得∠B=∠C,∠ADE=∠AED,所以得:∠ADB=∠AEC,即得△ABD≌△ACE,從而證得BD=CE;
(2)①(1)連接OD,根據OA=OB,CD=BD,得出OD∥AC,∠0DE=∠CED,再根據DE⊥AC,即可證出OD⊥DE,從而得出答案;
②結合①中的結論,可以證明△BOD是等邊三角形,即可求得CD和BD的長,再根據銳角三角函數即可計算DE的長.
解答:(1)已知:AB=AC,AD=AE,
求證:BD=CE.
證明:∵AB=AC,
∴∠B=∠C.
同理∠ADE=∠AED
∴180°-∠ADE=180°-∠AED,即∠ADB=∠AEC,
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴BD=CE;

(2)①證明:如圖2,連接OD.
∵OA=OB,CD=BD,
∴OD∥AC.
∴∠0DE=∠CED.
又∵DE⊥AC,
∴∠CED=90°.
∴∠ODE=90°,
即OD⊥DE.
∴DE是⊙O的切線;

②解:∵OD∥AC,∠BAC=60°,
∴∠BOD=∠BAC=60°,∠C=∠0DB.
又∵OB=OD,
∴△BOD是等邊三角形.
∴∠C=∠ODB=60°,CD=BD=5.
∵DE⊥AC,
∴DE=CD•sin∠C=5×sin60°=
點評:(1)此題考查的知識點是全等三角形的判定與性質,關鍵是由已知證△ABD≌△ACE;
(2)本題考查了切線的判定與性質,用到的知識點是圓周角定理的推論、線段垂直平分線的性質以及等邊三角形的判定,是一道?碱}型.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,要在一個圓形工件通過畫直徑來確定圓心,下列四種工具和確定方法不能找到圓心的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8)DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求AC的長;
(3)在圖2中,點G是x軸正半軸上一點,且0<OG<4,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②線段EF長有可能等于3嗎?若能,請求出相應的x的值,若不能請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在一條筆直地公路上有A、B、C三地,B、C兩地相距150km,甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2與行駛時間x(h)的函數圖象如圖2所示.(乙:折線E-M-P)

(1)請在圖1中標出A地的大致位置;
(2)圖2中,點M的坐標是
(1.2,0)
(1.2,0)
,該點的實際意義是
點M表示乙車1.2小時到達A地
點M表示乙車1.2小時到達A地
;
(3)求甲車到A地的距離y1與行駛時間x(h)的函數關系式,直接寫出乙車到A地的距離y2與行駛時間x(h)的函數關系式,并在圖2中補全甲車的函數圖象;
(4)A地設有指揮中心,指揮中心與兩車配有對講機,兩部對講機在15km之內(含15km)時能夠互相通話,直接寫出兩車可以同時與指揮中心用對講機通話的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在△ABC中,∠ACB=2∠B,∠BAC的平分線AO交BC于點D,點H為AO上一動點,過點H作直線l⊥AO于H,分別交直線AB、AC、BC于點N、E、M.
(1)當直線l經過點C時(如圖2),證明:BN=CD;
(2)當M是BC中點時,寫出CE和CD之間的等量關系,并加以證明;
(3)請直接寫出BN、CE、CD之間的等量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在一個7×7的正方形ABCD網格中,實線將它分割成5塊,再把這5塊拼成如精英家教網圖2,中間會出現一個小孔,如果正方形ABCD的邊長為a,試計算圖2中小孔的面積.

查看答案和解析>>

同步練習冊答案