如圖,已知拋物線與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標(biāo);
(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標(biāo);
(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(1)A點坐標(biāo)為(4,0),D點坐標(biāo)為(﹣2,0),C點坐標(biāo)為(0,﹣3);
(2)M點坐標(biāo)為(2,﹣3)或(1+,3)或(1﹣,3);
(3)結(jié)論:在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構(gòu)成的四邊形為梯形;點P的坐標(biāo)為(﹣2,0)或(6,6).

試題分析:(1)令Y=0,X=0就可以得到
根據(jù)已知先求得對稱軸,由于△MAD的面積與△CAD的面積相等,所以有兩種情況,一種是點M在X軸下方,此時點M與點C關(guān)于對稱軸對稱,另一種是點M在X軸上方,由于面積相等,而AD是兩個三角形公用的,所以可知點M的縱坐標(biāo)為3,將Y=3代入解析式就可求得.
分情況討論,一種是BC、AP為底,此時P點與D點重合;一種是AB、CP為底,此時要先求出AB所在直線的解析式,然后根據(jù)互相平行的兩直線的K值相等,求出CP的解析式,與二次函數(shù)的解析式聯(lián)立,得到方程組,求解即可得到。
試題解析:(1)∵y=x2x﹣3,∴當(dāng)y=0時,x2x﹣3=0,
解得x1=﹣2,x2=4.當(dāng)x=0,y=﹣3.
∴A點坐標(biāo)為(4,0),D點坐標(biāo)為(﹣2,0),C點坐標(biāo)為(0,﹣3);
(2)∵y=x2x﹣3,∴對稱軸為直線x==1.
∵AD在x軸上,點M在拋物線上,
∴當(dāng)△MAD的面積與△CAD的面積相等時,分兩種情況:
①點M在x軸下方時,根據(jù)拋物線的對稱性,可知點M與點C關(guān)于直線x=1對稱,
∵C點坐標(biāo)為(0,﹣3),∴M點坐標(biāo)為(2,﹣3);
②點M在x軸上方時,根據(jù)三角形的等面積法,可知M點到x軸的距離等于點C到x軸的距離3.當(dāng)y=3時,x2x﹣3=3,解得x1=1+,x2=1﹣
∴M點坐標(biāo)為(1+,3)或(1﹣,3).
綜上所述,所求M點坐標(biāo)為(2,﹣3)或(1+,3)或(1﹣,3);
(3)結(jié)論:存在.

如圖所示,在拋物線上有兩個點P滿足題意:
①若BC∥AP1,此時梯形為ABCP1
由點C關(guān)于拋物線對稱軸的對稱點為B,可知BC∥x軸,則P1與D點重合,
∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四邊形ABCP1為梯形;
②若AB∥CP2,此時梯形為ABCP2
∵A點坐標(biāo)為(4,0),B點坐標(biāo)為(2,﹣3),∴直線AB的解析式為y=x﹣6,
∴可設(shè)直線CP2的解析式為y=x+n,將C點坐標(biāo)(0,﹣3)代入,得b=﹣3,
∴直線CP2的解析式為y=x﹣3.∵點P2在拋物線y=x2x﹣3上,
x2x﹣3=x﹣3,化簡得:x2﹣6x=0,解得x1=0(舍去),x2=6,
∴點P2橫坐標(biāo)為6,代入直線CP2解析式求得縱坐標(biāo)為6,∴P2(6,6).
∵AB∥CP2,AB≠CP2,∴四邊形ABCP2為梯形.
綜上所述,在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構(gòu)成的四邊形為梯形;點P的坐標(biāo)為(﹣2,0)或(6,6).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=2x-3與二次函數(shù)y=x2-2x+1的圖象有(  )
A.一個交點B.無數(shù)個交點C.兩個交點D.無交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+mx+(m﹣1)與x軸交于點A(x1,0),B(x2,0),x1<x2,與y軸交于點C(0,c),且滿足x12+x22+x1x2=7.
(1)求拋物線的解析式;
(2)在拋物線上能不能找到一點P,使∠POC=∠PCO?若能,請求出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移1個單位,再向上平移2個單位,得到的拋物線的解析式是(  )
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=﹣x2+bx+c的對稱軸為x=2,且經(jīng)過原點,直線AC解析式為y=kx+4,
(1)求二次函數(shù)解析式;
(2)若=,求k;
(3)若以BC為直徑的圓經(jīng)過原點,求k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某水果店銷售某中水果,由歷年市場行情可知,從第1月至第12月,這種水果每千克售價y1(元)與銷售時間第x月之間存在如圖1(一條線段)的變化趨勢,每千克成本y2(元)與銷售時間第x月滿足函數(shù)關(guān)系式y(tǒng)2=mx2﹣8mx+n,其變化趨勢如圖2.

(1)求y2的解析式;
(2)第幾月銷售這種水果,每千克所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點A(3,2),B(0,1)和點C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點為P,點A關(guān)于對稱軸的對稱點為M,過M的直線交拋物線于另一點N(N在對稱軸右邊),交對稱軸于F,若,求點F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點G,使△BMA與△MBG相似?若存在,求點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個函數(shù)中,y隨x增大而減小的是( 。
A.y=2xB.y=-x2+2x-1
C.y=-
3
x
(x>0)
D.y=x2-2x+1(x<1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知點A(,)在拋物線上,則點A關(guān)于拋物線對稱軸的對稱點坐標(biāo)為
A.(-3,7)B.(-1,7)C.(-4,10)D.(0,10)

查看答案和解析>>

同步練習(xí)冊答案