【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

【答案】1)見解析;(260°

【解析】

1)根據(jù)等邊三角形的性質(zhì),利用SAS證明△AEC≌△BDA;

2)由△AEC≌△BDA,可證∠ACE=BAD,再根據(jù)三角形的外角與內(nèi)角的關(guān)系得到∠DFC=FAC+ACF=FAC+BAD=BAC=60°.

1)∵△ABC是等邊三角形,

∴∠BAC=B=60°,AB=AC

又∵AE=BD,

∴△AEC≌△BDASAS).

AD=CE;

2)∵(1)△AEC≌△BDA

∴∠ACE=BAD,

∴∠DFC=FAC+ACF=FAC+BAD=BAC=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)邊長(zhǎng)分別為48的長(zhǎng)方形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,

1AE的長(zhǎng).(2)折痕EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)騎自行車去濱海港郊游,中途休息了一段時(shí)間。如圖表示他離家的距離y(千米)與所用的時(shí)間s(小時(shí))之間關(guān)系的函數(shù)圖像

1)根據(jù)圖像回答:小明家離濱海港 千米,小明到達(dá)濱海港時(shí)用了 小時(shí);

2直線CD的函數(shù)解析式為

3)小明出發(fā)幾小時(shí),離家12千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是正方形,點(diǎn)GBC上的任意一點(diǎn),DE⊥AGE,BF∥DE,交AGF

求證:AF=BF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師計(jì)劃組織朋友去晉西北游覽兩日,經(jīng)了解,現(xiàn)有甲、乙兩家旅行社比較合適,報(bào)價(jià)均為每人元,且提供的服務(wù)完全相同.針對(duì)組團(tuán)兩日游的游客,甲旅行社表示,每人都按八五折收費(fèi);乙旅行社表示,若人數(shù)不超過人,每人都按九折收費(fèi),若超過人,則其中人按九折收費(fèi),超出人數(shù)每人按七五折收費(fèi).假設(shè)組團(tuán)參加兩日游的人數(shù)為.

1)請(qǐng)分別列式表示甲、乙兩家旅行社收取組團(tuán)兩日游的總費(fèi)用;

2)若王老師組團(tuán)參加兩日游的人數(shù)共有人,請(qǐng)你通過計(jì)算,在甲、乙兩家旅行社中,幫助王老師選擇收取總費(fèi)用較少的一家.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在任意四邊形ABCD,AC,BD是對(duì)角線,EF、G、H分別是線段BD、BC、AC、AD上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動(dòng)課中通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是( )

A. 當(dāng)E,FG,H是各條線段的中點(diǎn)時(shí),四邊形EFGH為平行四邊形

B. 當(dāng)E,F,GH是各條線段的中點(diǎn),ACBD時(shí)四邊形EFGH為矩形

C. 當(dāng)E,FG,H是各條線段的中點(diǎn),AB=CD時(shí)四邊形EFGH為菱形

D. 當(dāng)E,FGH不是各條線段的中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)有50個(gè)奇數(shù)排成的數(shù)陣,用如圖所示的框去框住四個(gè)數(shù),并求出這四個(gè)數(shù)的和,在下列給出的備選答案中,有可能是這四個(gè)數(shù)的和的是( 。

A. 114 B. 122 C. 220 D. 84

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知頂點(diǎn)的坐標(biāo)分別為,且是由旋轉(zhuǎn)得到.若點(diǎn)上,點(diǎn)軸上,要使四邊形為平行四邊形,則滿足條件的點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P是O外一點(diǎn),PO交O于點(diǎn)C,OC=CP=2,弦ABOCAOC的度數(shù)為60°,連接PB.

(1)求BC的長(zhǎng);

(2)求證:PB是O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案