【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為E,DE= ,則BC=

【答案】3
【解析】解:∵AD是△ABC的角平分線,DE⊥AB,∠C=90°, ∴CD=DE= ,
又∵直角△BDE中,∠B=30°,
∴BD=2DE=2
∴BC=CD+BD= +2 =3
所以答案是:3
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上,以及對含30度角的直角三角形的理解,了解在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線段AB上任意一點(diǎn),過C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線 與CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且 ,則k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tanOAC=

(1)求拋物線的解析式;

(2)點(diǎn)H是線段AC上任意一點(diǎn),過H作直線HNx軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;

(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對稱軸上?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AD是角平分線,BE平分ABC交AD于點(diǎn)E,點(diǎn)O在AB上,以O(shè)B為半徑的O經(jīng)過點(diǎn)E,交AB于點(diǎn)F

(1)求證:AD是O的切線;

(2)若AC=4,C=30°,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在證明“△ABC內(nèi)角和等于180°”時(shí),延長BC至D,過點(diǎn)C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,這個(gè)證明方法體現(xiàn)的數(shù)學(xué)思想是(
A.數(shù)形結(jié)合
B.特殊到一般
C.一般到特殊
D.轉(zhuǎn)化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組中,不是同類項(xiàng)的是( )

A. 2a 與 a B. a2 b 與 ab2 C. ab 與 ba D. 5 與 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)A在y軸正半軸上,點(diǎn)B的坐標(biāo)為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn)且SPAD=S正方形ABCD;求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“可燃冰”的開發(fā)成功,拉開了我國開發(fā)新能源的大門,目前發(fā)現(xiàn)我國南!翱扇急眱Υ媪窟_(dá)到800億噸,將800億用科學(xué)記數(shù)法可表示為( )

A.0.8×1011B.8×1010C.80×109D.800×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點(diǎn).

(1)試求拋物線的解析式;

(2)記拋物線頂點(diǎn)為D,求△BCD的面積;

(3)若直線向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案