【題目】閱讀以下材料:
對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若(且),那么叫做以為底的對數(shù),記作,比如指數(shù)式可以轉(zhuǎn)化為對數(shù)式,對數(shù)式,可以轉(zhuǎn)化為指數(shù)式.
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):
(,,,),理由如下:
設(shè),,則,,
∴,由對數(shù)的定義得
又∵
∴
根據(jù)閱讀材料,解決以下問題:
(1)將指數(shù)式轉(zhuǎn)化為對數(shù)式________;
(2)求證:(,,,)
(3)拓展運(yùn)用:計(jì)算________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,風(fēng)車的支桿OE垂直于桌面,風(fēng)車中心O到桌面的距離OE為25cm,小小風(fēng)車在風(fēng)吹動下繞著中心O不停地轉(zhuǎn)動,轉(zhuǎn)動過程中,葉片端點(diǎn)A、B、C、D在同一圓O上,已知⊙O的半徑為10cm,
(1)風(fēng)車在轉(zhuǎn)動過程中,當(dāng)∠AOE=30°時,求點(diǎn)A到桌面的距離.
(2)在風(fēng)車轉(zhuǎn)動一周的過程中,求點(diǎn)A相對于桌面的高度不超過20cm所經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校創(chuàng)客社團(tuán)計(jì)劃利用新購買的無人機(jī)設(shè)備測量學(xué)校旗桿的高.他們先將無人機(jī)放在旗桿前的點(diǎn)處(無人機(jī)自身的高度忽略不計(jì)),測得此時點(diǎn)的仰角為,因?yàn)槠鞐U底部有臺階,所以不能直接測出垂足到點(diǎn)的距離.無人機(jī)起飛后,被風(fēng)吹至點(diǎn)處,此時無人機(jī)距地面的高度為3米,測得此時點(diǎn)的俯角為,點(diǎn)的仰角為,且點(diǎn),,在同一平面內(nèi),求旗桿的高度.(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與軸兩個交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向下平移3個單位,得到的拋物線過點(diǎn)( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)根據(jù)圖象寫出使一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像如圖所示,頂點(diǎn)為,有下列結(jié)論:①;②;③;④,其中,正確結(jié)論有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?
(1)(2x+3)2 -16=0
(2)3x2+x-1=0
(3)3x(x-1)=2-2x
(4)9(3x-1)2 =(2-x)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com