【題目】已知ABCD的一組鄰邊AB、AD的長是關(guān)于x的方程x2﹣4x+m=0的兩個(gè)實(shí)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?
(2)在第(1)問的前提下,若∠ABC=60°,求ABCD的面積.
【答案】(1)當(dāng)m=4時(shí),四邊形ABCD是菱形;(2)2.
【解析】
試題分析:(1)四邊形ABCD是菱形時(shí),AB=AD,由一元二次方程根的判別式=0即可求出m的值;
(2)連接AC、BD交于點(diǎn)O,由一元二次方程的根求出AB的長,進(jìn)一步利用菱形的性質(zhì)和30°角的直角三角形的性質(zhì)求得對角線的長,利用面積計(jì)算方法計(jì)算得出答案即可.
解:(1)四邊形ABCD是菱形時(shí),AB=AD,
∵AB,AD的長是關(guān)于x的方程x2﹣mx+4=0的兩個(gè)實(shí)數(shù)根,
∴△=(﹣4)2﹣4m=0,
解得:m=4,
∴當(dāng)m=4時(shí),四邊形ABCD是菱形
(2)如圖,連接AC、BD交于點(diǎn)O,
當(dāng)m=4時(shí),
x2﹣4x+4=0,
解得:x1=x2=2,
則AB=2,
∵四邊形ABCD是菱形,∠ABC=60°,
∴∠ABO=∠ABC=30°,
D═2OB,AC=2OA,AC⊥BD,
在直角△AOB中,
∵∠ABO=30°,
∴OA=AB=1,
0B=,
BD=2OB=2,
AC=2OA=2,
∴S菱形ABCD=BDAC=×2×2=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于﹣(﹣a)2的相反數(shù),有下列說法:①等于a2;②等于(﹣a)2;③值可能為0;④值一定是正數(shù).其中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點(diǎn)F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成下面的統(tǒng)計(jì)圖,
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)求這50名同學(xué)捐款的平均數(shù);
(3)該校共有800名學(xué)生參與捐款,請估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,EF、GH過點(diǎn)O,且點(diǎn)E、H在邊AB上,點(diǎn)G、F在邊CD上,向ABCD內(nèi)部投擲飛鏢(每次均落在ABCD內(nèi),且落在ABCD內(nèi)任何一點(diǎn)的機(jī)會(huì)均等)恰好落在陰影區(qū)域的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)三角形只有以下元素對應(yīng)相等,不能判定兩個(gè)三角形全等的( )
A. 兩角和一邊 B. 兩邊及夾角 C. 三個(gè)角 D. 三條邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下面四個(gè)結(jié)論:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四邊形DEOF,其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式由左邊到右邊的變形,是因式分解的是( )
A. 3x(x+y)=3x2+3xy B. -2x2-2xy=-2x(x+y)
C. (x+5)(x-5)=x2-25 D. x2+x+1=x(x+1)+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com