【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點A的坐標為(6,8),OA=OB,點P在線段OB上,點Q在y軸的正半軸上,OP=2OQ,過點Q作x軸的平行線分別交OA,AB于點E,F(xiàn).

(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點P的坐標;
(3)是否存在點P,使△PEF為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】
(1)

解:∵A(6,8),∴OA= =10,

∴OB=OA=10,即B(10,0),

設直線AB解析式為y=kx+b,

把A與B坐標代入得:

解得:k=﹣2,b=20.

則直線AB解析式為y=﹣2x+20


(2)

解:由A(6,8),得到直線OA解析式為y= x,

設OQ=t,則有OP=2OQ=2t,

把y=t代入y= x得:x= t;代入y=﹣2x+20得:x=10﹣ t,

∴E( t,t),F(xiàn)(10﹣ t,t),

∴EF=10﹣ t﹣ t=10﹣ t,

若四邊形POEF為平行四邊形,則有EF=OP,即10﹣ t=2t,

解得:t=


(3)

解:分三種情況考慮:

若∠PEF=90°,則有 t=2t,無解,不可能;

若∠PFE=90°,則有10﹣ =2t,解得:t=4,此時OP=8,即P(8,0);

若∠EPF=90°,過E、F分別作x軸垂線,垂足分別為G、H,

∴Rt△EGP∽Rt△PHF,

= ,即 = ,

解得:t= ,此時P= ,即P( ,0).

綜上,P的坐標為(8,0)或( ,0)


【解析】(1)由A坐標確定出OA的長,即為OB的長,確定出B坐標,利用待定系數(shù)法求出直線AB解析式即可;(2)由A坐標確定出直線OA解析式,設OQ=t,則有OP=2t,表示出E與F坐標,進而表示出EF長,由四邊形POEF為平行四邊形,得到EF=OP,求出t的值,即可確定出P坐標;(3)分三種情況考慮:若∠PEF=90°;若∠PFE=90°;若∠EPF=90°,過E、F分別作x軸垂線,垂足分別為G、H,分別求出t的值,確定出滿足題意P坐標即可.
【考點精析】認真審題,首先需要了解確定一次函數(shù)的表達式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握平行四邊形的性質(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,動點P、Q同時從點A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點C運動,設運動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關系可以用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標原點,與x軸交于點A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點P,滿足SAOP=1,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題我們稱之為“飲馬問題”.如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的C點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?某課題組在探究這一問題時抽象出數(shù)學模型:

直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。

解法:作點A關于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為線段A′B的長.

(1)根據(jù)上面的描述,在備用圖中畫出解決“飲馬問題”的圖形;

(2)利用軸對稱作圖解決“飲馬問題”的依據(jù)是   

(3)應用:如圖2,已知AOB=30°,其內部有一點P,OP=12,在AOB的兩邊分別有C、D兩點(不同于點O),使PCD的周長最小,請畫出草圖,并求出PCD周長的最小值;

如圖3,點A(4,2),點B(1,6)在第一象限,在x軸、y軸上是否存在點D、點C,使得四邊形ABCD的周長最?若存在,請畫出草圖,并求其最小周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于(
A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A的坐標為(2,0),點P在直線y=x上運動,當以點P為圓心,PA的長為半徑的圓的面積最小時,點P的坐標為(
A.(1,﹣1)
B.(0,0)
C.(1,1)
D.(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

同步練習冊答案