【題目】小明家、食堂、圖書館依次在同一條直線上,小明從家去食堂吃早餐,接著云圖書館讀報,然后回家。如圖反映了這個過程,小明離家的距離與時間之間的對應關系,下列說法錯誤的是(

A. 小明從家到食堂用了8min B. 小明家離食堂0.6km,食堂離圖書館0.2km

C. 小明吃早餐用了30min,讀報用了17min D. 小明從圖書館回家的平均速度為0.08km/min

【答案】C

【解析】根據(jù)題意,分析圖象,結合簡單計算,可以得到答案.

A. 小明從家到食堂用了8min,故A選項說法正確;

B. 小明家離食堂0.6km,食堂離圖書館0.8-0.6=0.2(km),B選項說法正確;

C. 小明吃早餐用了25-8=17(min),讀報用了58-28=30(min),故C選項錯誤;

D. 小明從圖書館回家的平均速度為0.8÷(68-58=)0.08(km/min),D選項正確.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商品公司為指導某種應季商品的生產和銷售,在對歷年市場行情和生產情況進行調查基礎上,對今年這種商品的市場售價和生產成本進行了預測并提供了兩個方面的信息:如圖(1)(2).

注:兩圖中的每個實心黑點所對應的縱坐標分別指相應月份一件商品的售價和成本,生產成本6月份最高;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種商品,一件商品的利潤是多少?
(2)設t月份出售這種商品,一件商品的成本Q(元),求Q關于t的函數(shù)解析式.
(3)設t月份出售這種商品,一件商品的利潤W(元),求W關于t的函數(shù)解析式.
(4)問哪個月出售這種商品,一件商品的利潤最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店因換季將某種服裝打折銷售,每件服裝如果按標價的4折出售將虧40元,而按標價8折出售將賺40元.問:

(1)每件服裝的標價是多少元?

(2)每件服裝的成本是多少元?

(3)為了保證不虧損,最多可以打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:小華遇到這樣一個問題:
已知:如圖1,在△ABC中,三邊的長分別為AB= ,AC= ,BC=2,求∠A的正切值.
小華是這樣解決問題的:
如圖2所示,先在一個正方形網格(每個小正方形的邊長均為1)中畫出格點△ABC(△ABC三個頂點都在小正方形的頂點處),然后在這個正方形網格中再畫一個和△ABC相似的格點△DEF,從而使問題得解.

(1)如圖2,△DEF中與∠A相等的角為 , ∠A的正切值為
(2)參考小華的方法請解決問題:若△LMN的三邊分別為LM=2,MN=2 ,LN=2 ,求∠N的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD,AB=AD=2,A=60°,BC=,CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則 的值是;
(2)如果一級樓梯的高度HE=(8 +2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在棋盤中建立如圖的直角坐標系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他格點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置的坐標.(寫出2個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料1:反射定律

當入射光線AO照射到平面鏡上時,將遵循平面鏡反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,顯然,這兩個角的余角也相等,其中法線(OM)與平面鏡垂直,并且滿足入射光線、反射光線(OB)與法線在同一個平面.

材料2:平行逃逸角

對于某定角∠AOB=α(0°<α<90°),點P為邊OB上一點,從點P發(fā)出一光線PQ(射線),其角度為∠BPQ=β(0°<β<90°),當光線PQ接觸到邊OA和OB時會遵循反射定律發(fā)生反射,當光線PQ經過n次反射后與邊OA或OB平行時,稱角為定角α的n階平行逃逸角,特別地,當光線PQ直接與OA平行時,稱角β為定角α的零階平行逃逸角.

(1)已知∠AOB=α=20°,

①如圖1,若PQ∥OA,則∠BPQ=   °,即該角為α的零階平行逃逸角;

②如圖2,經過一次反射后的光線P1Q∥OB,此時的∠BPP1為α的平行逃逸角,求∠BPP1的大;

③若經過兩次反射后的光線與OA平行,請補全圖形,并直接寫出α的二階平行逃逸角為   °;

(2)根據(jù)(1)的結論,歸納猜想對于任意角α(0°<α<90°),其n(n為自然數(shù))階平行逃逸角β=   (用含n和a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校數(shù)學魔盜團社團準備購買A,B兩種魔方,已知購買2A種魔方和6B種魔方共需130元,購買1A種魔方比1B種魔方多花5元.

(1)求這兩種魔方的單價;

(2)結合社員們的需求,社團決定購買A,B兩種魔方共100(其中A種魔方不超過50).“11期間某商店有兩種優(yōu)惠活動,如圖所示.請根據(jù)以上信息填空:購買A種魔方________個時選擇活動一盒活動二購買所需費用相同.

查看答案和解析>>

同步練習冊答案