【題目】如圖,⊙O的半徑為6cm,B⊙O外一點(diǎn),OB⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP⊙O相切.

【答案】210

【解析】

根據(jù)切線(xiàn)的判定與性質(zhì)進(jìn)行分析即可.若BP與⊙O相切,則∠OPB=90°,又因?yàn)?/span>OB=2OP,可得∠B=30°,則∠BOP=60°;根據(jù)弧長(zhǎng)公式求得弧AP長(zhǎng),除以速度,即可求得時(shí)間.

連接OP
∵當(dāng)OP⊥PB時(shí),BP與⊙O相切,

∵AB=OA,OA=OP,

∴OB=2OP,∠OPB=90°;

∴∠B=30°;

∴∠O=60°;

∵OA=6cm,

弧AP==2π,

∵圓的周長(zhǎng)為:12π,

∴點(diǎn)P運(yùn)動(dòng)的距離為2π或12π-2π=10π;

∴當(dāng)t=2秒或10秒時(shí),有BP與⊙O相切.

故答案為210

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)方形ABCD中,∠DAB=∠B=∠DCB=∠D90°,ADBC6ABCD10.點(diǎn)E為射線(xiàn)DC上的一個(gè)動(dòng)點(diǎn),把△ADE沿直線(xiàn)AE翻折得△ADE

1)當(dāng)D′點(diǎn)落在AB邊上時(shí),∠DAE   °;

2)如圖2,當(dāng)E點(diǎn)與C點(diǎn)重合時(shí),DCAB交點(diǎn)F,

①求證:AFFC;②求AF長(zhǎng).

3)連接DB,當(dāng)∠ADB90°時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】筐白菜,以每筐千克為標(biāo)準(zhǔn),超過(guò)或不足的分別用正、負(fù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差單位:千克

筐 數(shù)

(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計(jì)超過(guò)或不足多少千克?

(2)若白菜每千克售價(jià)元,則出售這筐白菜可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線(xiàn).如圖:一把直尺壓住射線(xiàn)OB,另一把直尺壓住射線(xiàn)OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線(xiàn)OP就是∠BOA的角平分線(xiàn).他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線(xiàn)上

B. 角平分線(xiàn)上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線(xiàn)的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線(xiàn)l交拋物線(xiàn)于點(diǎn)Q,交直線(xiàn)BD于點(diǎn)M.

(1)求該拋物線(xiàn)所表示的二次函數(shù)的表達(dá)式;

(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

(3)點(diǎn)P在線(xiàn)段AB運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1班部分同學(xué)接受一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.

1)初三(1)班接受調(diào)查的同學(xué)共有多少名;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);

3)若喜歡交流談心5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線(xiàn)段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段CQ,連接BP,DQ.

(1)如圖a,求證:BCP≌△DCQ;

(2)如圖,延長(zhǎng)BP交直線(xiàn)DQ于點(diǎn)E.

如圖b,求證:BEDQ;

如圖c,若BCP為等邊三角形,判斷DEP的形狀,并說(shuō)明理由;

若正方形ABCD的邊長(zhǎng)為10,DE=2,PB=PC,直接寫(xiě)出線(xiàn)段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練設(shè)計(jì)了折返跑訓(xùn)練.教練在東西方向的足球場(chǎng)上畫(huà)了一條直線(xiàn)插上不同的折返旗幟,如果約定向西為正,向東為負(fù),練習(xí)一組的行駛記錄如下(單位:米):+40,-30+50,-25,+25-30,+15,-28,+16,-20.

1)球員最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?

2)球員訓(xùn)練過(guò)程中,最遠(yuǎn)處離出發(fā)點(diǎn)多遠(yuǎn)?

3)球員在一組練習(xí)過(guò)程中,跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)經(jīng)過(guò)兩點(diǎn),與x軸交于另一點(diǎn)B.點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn)。

(1)求拋物線(xiàn)的解析式;

(2)是否存在點(diǎn)P,使得△BCP是以BC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)當(dāng)P運(yùn)動(dòng)到第一象限時(shí),過(guò)P作直線(xiàn)PM平行y軸,交直線(xiàn)BC于點(diǎn)M。

①求線(xiàn)段PM長(zhǎng)度的最大值

②D為平面內(nèi)任意一點(diǎn),當(dāng)線(xiàn)段PM最大時(shí),是否存在以C、P、M、D為頂點(diǎn)的平行四邊形。若存在,直接寫(xiě)出所有符合條件的點(diǎn)D坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案