【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)觀測(cè)站,C離海岸線l的距離(即CD的長(zhǎng))為2,從A測(cè)得船C在北偏東45°的方向,從B測(cè)得船C在北偏東22.5°的方向,則AB的長(zhǎng)( )
A. 2 km B. (2+)km C. (4-2) km D. (4-) km
【答案】C
【解析】
根據(jù)題意在CD上取一點(diǎn)E,使BD=DE,設(shè)AB=x,則DE=2-x,EC=(2-x),再根據(jù)DE+EC=CD列出方程2-x+(2-x)=2,求解即可.
解:在CD上取一點(diǎn)E,使BD=DE,
可得:∠EBD=∠BED =45°,
∵從A測(cè)得船C在北偏東45°的方向,
∴AD=DC=2,
∵從B測(cè)得船C在北偏東22.5°的方向,
∴∠BCE=∠CBE=22.5°,
∴BE=EC.
設(shè)AB=x,則DE=BD=AD-AB=2-x,
∴EC=BE=BD=(2-x),
∵DE+EC=CD,
∴2-x+(2-x)=2,
解得x=4-2,即AB=4-2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、是以為直徑的半圓的兩條切線,與半圓交于點(diǎn),連接,過(guò)點(diǎn)作,交于點(diǎn).
(1)若弧AE的度數(shù)為140,求的度數(shù);
(2)求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù)中,圖象經(jīng)過(guò)原點(diǎn)且對(duì)稱軸在y軸左側(cè)的二次函數(shù)是( )
A. y=x2+2x B. y=x2﹣2x C. y=2(x+1)2 D. y=2(x﹣1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),B是x軸正半軸上一動(dòng)點(diǎn),將點(diǎn)A繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得點(diǎn)C,OB延長(zhǎng)線上有一點(diǎn)D,滿足∠BDC=∠BAC,則線段BD長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,F在BD上,BC、AD相交于點(diǎn)E,且AB∥CD∥EF,
(1)圖中有哪幾對(duì)位似三角形,選其中一對(duì)加以證明;
(2)若AB=2,CD=3,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題7分)如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度.他們?cè)谶@棵樹(shù)正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為 (即AB:BC=),且B、C、E三點(diǎn)在同一條盲線上。請(qǐng)根據(jù)以上殺件求出樹(shù)DE的高度(測(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明將1000元存入銀行,定期一年,到期后他取出600元后,將剩下部分(包括利息)繼續(xù)存入銀行,定期還是一年,到期后全部取出,正好是550元,請(qǐng)問(wèn)定期一年的利率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是☉O的直徑,點(diǎn)C在☉O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,∠COB=2∠PCB.
(1)求證:PC是☉O的切線;
(2)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若MN·MC=8,求☉O的直徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com