【題目】如圖,已知△ABC是等邊三角形,D是AC的中點,F為AB邊上一點,且AF=2BF,E為射線BC上一點,∠EDF=120°,則=____.
【答案】
【解析】
過D作DG∥BC交AB于G,則DG為△ABC的中位線,根據(jù)等邊三角形的性質(zhì)得∠ACB=∠ABC=60°,由DG∥BC,得∠FGD=120°,∠GDC=120°,△AGD為等邊三角形,而∠EDF=120°,得∠GDF=∠CDE,易證得△GDF∽△CDE,所以FG:CE=DG:DC,即CE:DC=FG:DG=FG:AG,設(shè)BF=x,AF=2x,則AB=3x,AG=1.5x,FG=1.5xx=0.5x,即可得到CE:CD的比值.
解:過D作DG∥BC交AB于G,如圖,
∵D是AC的中點,
∴DG為△ABC的中位線,
∵△ABC是等邊三角形,
∴∠ACB=∠ABC=60°,
∴∠DCE=120°,
又∵DG∥BC,
∴∠FGD=120°,∠GDC=120°,△AGD為等邊三角形,
∵∠EDF=120°,
∴∠GDF=∠CDE,
∴△GDF∽△CDE,
∴FG:CE=DG:CD,即CE:CD=FG:DG,
而DG=AG=BG,AF=2BF,
設(shè)BF=x,AF=2x,則AB=3x,AG=1.5x,FG=1.5xx=0.5x,
∴CE:CD=FG:DG=FG:AG=0.5x:1.5x=1:3.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在公路 MN 兩側(cè)分別有 A, A......A,七個工廠,各工廠與公路 MN(圖中粗線)之間有小公路連接.現(xiàn)在需要在公路 MN 上設(shè)置一個車站,選擇站址的標(biāo)準(zhǔn)是“使各工廠到車站的距離之和越小越好”.則下面結(jié)論中正確的是( ).
①車站的位置設(shè)在 C 點好于 B 點;
②車站的位置設(shè)在 B 點與 C 點之問公路上任何一點效果一樣;
③車站位置的設(shè)置與各段小公路的長度無關(guān).
A.①B.②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點M、N分別在AD、BC邊上,將矩形ABCD沿MN翻折,點C恰好落在AD邊上的點F處,若MD=1,∠MNC=60°,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2mx+m2+2m+2的圖象與x軸有兩個交點.
(1)當(dāng)m=﹣2時,求二次函數(shù)的圖象與x軸交點的坐標(biāo);
(2)過點P(0,m﹣1)作直線1⊥y軸,二次函數(shù)圖象的頂點A在直線l與x軸之間(不包含點A在直線l上),求m的范圍;
(3)在(2)的條件下,設(shè)二次函數(shù)圖象的對稱軸與直線l相交于點B,求△ABO的面積最大時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,.過B作BE//AC.
(1)求BE與AC之間的距離;
(2)F為BE上一點,連接AF,過C作CG//AF交BE于G.若∠FAB=15°,
①依題意補(bǔ)全圖形;
②求證:四邊形AFGC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC的平分線AD交BC于點D,DE垂直平分AC,垂足為點E.
(1)證明∠BAD=∠C;
(2)∠BAD=29°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖特有的魅力曾使無數(shù)人沉湎其中.傳說拿破侖通過下列尺規(guī)作圖考他的大臣:
①將半徑為r的⊙O六等分,依次得到A,B,C,D,E,F(xiàn)六個分點;
②分別以點A,D為圓心,AC長為半徑畫弧,G是兩弧的一個交點;
③連結(jié)OG.
問:OG的長是多少?
大臣給出的正確答案應(yīng)是( 。
A. r B. (1+)r C. (1+)r D. r
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖1,將矩形紙片沿對角線剪開,得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點作的平行線,與的延長線交于點,則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,與相交于點,如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣木瓜村盛產(chǎn)優(yōu)種紅富士蘋果,曾推選參加省農(nóng)產(chǎn)品博覽會,某人去該地水果批發(fā)市場采購蘋果,他看中了A、B兩家蘋果.這兩家蘋果品質(zhì)都一樣,市場售價都為6元/千克,但批發(fā)進(jìn)價不相同.兩家蘋果批發(fā)進(jìn)價如下:
A家規(guī)定:批發(fā)數(shù)量不超過1000千克,可按市場售價的92%優(yōu)惠;批發(fā)數(shù)量多于1000千克但不超過2000千克,可全部按市場售價的90%優(yōu)惠;批發(fā)數(shù)超過2000千克則全部按市場售價的88%優(yōu)惠.
B家的規(guī)定如下表:
數(shù)量范圍(千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
批發(fā)進(jìn)價(元) | 市場售價的95% | 市場售價的85% | 市場售價的75% | 市場售價的70% |
[表格說明: 家蘋果批發(fā)進(jìn)價按分段計算,如:某人要批發(fā)蘋果2100千克,則批發(fā)進(jìn)價]
根據(jù)上述信息,請解答下列問題:
(1)如果此人要批發(fā)1000千克蘋果,則他在家批發(fā)需要_______元,在家批發(fā)需要_______元;
(2)如果此人批發(fā)千克蘋果(1500<x<2000),則他在家批發(fā)需要_______元,在家批發(fā)需要_______元(用含的代數(shù)式表示);
(3)現(xiàn)在此人要批發(fā)3000千克蘋果,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com