【題目】(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補(bǔ)全證明過程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),求證:PA=PC+ PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.
【答案】(1)見解析;(2)見解析;(3)PA=PC+PB
【解析】
(1)延長(zhǎng)BP至E,使PE=PC,連接CE,證明△PCE是等邊三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠PAC,得到△BEC≌△APC,所以PA=BE=PB+PC;
(2)過點(diǎn)B作BE⊥PB交PA于E,證明ABE≌△CBP,所以PC=AE,可得PA=PC+PB;(3)在AP上截取AQ=PC,連接BQ可證△ABQ≌△CBP,所以BQ=BP.又因?yàn)椤?/span>APB=30°.所以PQ=PB,PA=PQ+AQ=PB+PC.
證明:(1)延長(zhǎng)BP至E,使PE=PC,
連接CE.∵∠1=∠2=60°,∠3=∠4=60°,
∴∠CPE=60°,
∴△PCE是等邊三角形,
∴CE=PC,∠E=∠3=60°;
又∵∠EBC=∠PAC,
∴△BEC≌△APC,
∴PA=BE=PB+PC.
(2)過點(diǎn)B作BE⊥PB交PA于E.
∵∠1+∠2=∠2+∠3=90°
∴∠1=∠3,
又∵∠APB=45°,
∴BP=BE,∴;
又∵AB=BC,
∴△ABE≌△CBP,
∴PC=AE.
∴.
(3)答:;
證明:在AP上截取AQ=PC,
連接BQ,∵∠BAP=∠BCP,AB=BC,
∴△ABQ≌△CBP,
∴BQ=BP.
又∵∠APB=30°,
∴PB
∴PB+PC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)交于點(diǎn), .
(1)分別求出反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個(gè)老年活動(dòng)中心,這樣必須把1200立方米的生活垃圾運(yùn)走.
(1)假如每天能運(yùn)x立方米,所需時(shí)間為y天,寫出y與x之間的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)若每輛拖拉機(jī)一天能運(yùn)12立方米,則5輛這樣的拖拉機(jī)要用多少天才能運(yùn)完?
(3)在(2)的條件下,運(yùn)了8天后,剩下的任務(wù)要在不超過6天的時(shí)間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機(jī)才能按時(shí)完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點(diǎn)B為圓心、2為半徑的⊙B上有一動(dòng)點(diǎn)P.連接AP,若點(diǎn)C為AP的中點(diǎn),連接OC,則OC的最小值為( 。
A. 1 B. 2﹣1 C. D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)、在邊上,,.
試說明與相似.
若,,,請(qǐng)你求出與之間的函數(shù)關(guān)系式.
小明猜想:若,,,只要與之間滿足某種關(guān)系式,問題中的函數(shù)關(guān)系式仍然成立.你同意小明的觀點(diǎn)嗎?如果你同意,請(qǐng)求出與所滿足的關(guān)系式;若不同意,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個(gè)數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-x+b與雙曲線y=(x>0)交于A、B兩點(diǎn),與x軸、y軸分別交干E、F兩點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D,當(dāng)b= _____時(shí),△ACE、△BDF與△ABO面積的和等于△EFO面積的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com