【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為

【答案】(2,4)或(3,4)或(8,4)
【解析】解:當(dāng)OD=PD(P在右邊)時(shí),根據(jù)題意畫出圖形,如圖所示:
過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD= OA=5,
根據(jù)勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,則P1(8,4);
當(dāng)PD=OD(P在左邊)時(shí),根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根據(jù)勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,則P2(2,4);
當(dāng)PO=OD時(shí),根據(jù)題意畫出圖形,如圖所示:

過P作PQ⊥x軸交x軸于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根據(jù)勾股定理得:OQ=3,則P3(3,4),
綜上,滿足題意的P坐標(biāo)為(2,4)或(3,4)或(8,4).
故答案為:(2,4)或(3,4)或(8,4)
分PD=OD(P在右邊),PD=OD(P在左邊),OP=OD三種情況,根據(jù)題意畫出圖形,作PQ垂直于x軸,找出直角三角形,根據(jù)勾股定理求出OQ,然后根據(jù)圖形寫出P的坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y= x,過點(diǎn)A(0,1)作y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1 , 過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;…按此作法繼續(xù)下去,則點(diǎn)A2015的坐標(biāo)為( )

A.(0,42015
B.(0,42014
C.(0,32015
D.(0,32014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B和點(diǎn)C分別是x軸的正半軸和y軸的正半軸上的兩點(diǎn),且OB:BC=1:,直線BC的解析式為y=﹣kx+6k(k≠0).

(1)如圖1,求點(diǎn)C的坐標(biāo);

(2)如圖2,點(diǎn)DOB中點(diǎn),點(diǎn)EOC中點(diǎn),點(diǎn)Fy軸的負(fù)半軸上,點(diǎn)A是射線FD上的第一象限的點(diǎn),連接AE、ED,若FD=DA,且SAED=,求點(diǎn)A的坐標(biāo);

(3)如圖3,在(2)的條件下,點(diǎn)P在線段OB上,點(diǎn)Q在線段OC的延長線上,CQ=BP,連接PQBC交于點(diǎn)M,連接AM并延長AM到點(diǎn)N,連接QN、AP、ABNP,若∠QPA﹣NQO=NQP﹣PAB,NP=2,求直線PQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市政府要求武漢輕軌二七路段工程12個(gè)月完工,F(xiàn)由甲、乙兩工程隊(duì)參與施工,已知甲隊(duì)單獨(dú)完成需要16個(gè)月,每月需費(fèi)用600萬元;乙隊(duì)單獨(dú)完成需要24個(gè)月,每月需費(fèi)用400萬元。由于前期工程路面較寬,可由甲、乙兩隊(duì)共同施工。隨著工程的進(jìn)行,路面變窄,兩隊(duì)再同時(shí)施工,對(duì)交通影響較大,為了減小對(duì)解放大道的交通秩序的影響,后期只能由一個(gè)工程隊(duì)施工.工程總指揮部結(jié)合實(shí)際情況現(xiàn)擬定兩套工程方案:

①先由甲、乙兩個(gè)工程隊(duì)合做m個(gè)月后,再由甲隊(duì)單獨(dú)施工,保證恰好按時(shí)完成.

②先由甲、乙兩個(gè)工程隊(duì)合做n個(gè)月后,再由乙隊(duì)單獨(dú)施工,也保證恰好按時(shí)完成.

求兩套方案中mn的值;

⑵通過計(jì)算,并結(jié)合施工費(fèi)用及施工對(duì)交通的影響,你認(rèn)為該工程總指揮部應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作AC的垂線交AC的延長線于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在等腰梯形ABCD中,AD//BC,∠BDC=∠BCD,點(diǎn)E是線段BD上一點(diǎn),且BE=AD.
(1)證明:△ADB≌△EBC;
(2)直接寫出圖中所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?/span>62兩種型號(hào)客車作為交通工具.

下表是租車公司提供給學(xué)校有關(guān)兩種型號(hào)客車的載客量和租金信息:

型號(hào)

載客量

租金單價(jià)

30人/輛

380元/輛

20人/輛

280元/輛

注:載客量指的是每輛客車最多可載該校師生的人數(shù).設(shè)學(xué)校租用型號(hào)客車輛,租車總費(fèi)用為.

1)求的函數(shù)解析式,請(qǐng)直接寫出的取值范圍;

2)若要使租車總費(fèi)用不超過21940元,一共有幾種租車方案?哪種租車方案總費(fèi)用最省?最省的總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C﹣D﹣A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線l//AD,與線段CD的交點(diǎn)為E,與折線A﹣C﹣B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)t=0.5時(shí),求線段QM的長;
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄? 是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DCB中,A=D=90°,AC=BD,AC與BD相交于點(diǎn)O.

(1)求證:ABO≌△DCO;

(2)OBC是何種三角形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案