【題目】1)如圖①,ABC中,點(diǎn)DE在邊BC上,AD平分∠BACAEBC,∠B35°,∠C65°,求∠DAE的度數(shù);

2)如圖②,若把(1)中的條件AEBC變成FDA延長線上一點(diǎn),FEBC,其他條件不變,求∠F的度數(shù).

【答案】(1)15°;(215°

【解析】

1)先根據(jù)三角形內(nèi)角和求得∠BAC的度數(shù),再根據(jù)AD平分∠BACAEBC,求得∠BAE,∠BAD的度數(shù),最后根據(jù)∠DAE=BAE-BAD計(jì)算即可;

2)先作AHBCH,再根據(jù)平行線的性質(zhì)求得∠DFE的度數(shù)

1)∠BAC180°﹣∠B﹣∠C180°35°65°80°

AD平分∠BAC,

∴∠BADBAC40°

AEBC,

∴∠AEB90°,

∴∠BAE90°﹣∠B55°,

∴∠DAE=∠BAE﹣∠BAD55°40°15°;

2)作AHBCH,如圖②,

由(1)可得∠DAH15°

FEBC,

AHEF,

∴∠DFE=∠DAH15°;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:京張高鐵是一條連接北京市與河北省張家口市的城際鐵路.2019年底,京張高鐵正式開通,京張高鐵是我國八縱八橫高鐵網(wǎng)的重要組成部分,也是2022年北京冬奧會(huì)重要的交通保障設(shè)施.已知該高鐵全長約180千米,按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的3倍,全程用時(shí)比普通快車少用1個(gè)小時(shí),求京張高鐵列車的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形為正方形,點(diǎn)為線段上一點(diǎn),連接,過點(diǎn),交射線于點(diǎn),以、為鄰邊作矩形,連接

如圖,求證:矩形是正方形;

,,求的長度;

當(dāng)線段與正方形的某條邊的夾角是時(shí),直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的一個(gè)內(nèi)接三角形,點(diǎn)是劣弧上一點(diǎn)(點(diǎn)不與重合),設(shè)

當(dāng)時(shí),求的度數(shù);

猜想之間的關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A50°,∠B=∠C,點(diǎn)D,E,F分別在邊BC,CAAB上,且滿足BFCDBDCE,∠BFD30°,則∠FDE的度數(shù)為(  )

A.75°B.80°C.65°D.95°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是(  )

A. 的收入去年和前年相同

B. 的收入所占比例前年的比去年的大

C. 去年的收入為2.8萬

D. 前年年收入不止①②③三種農(nóng)作物的收入

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí),圖中分別表示甲、乙兩人前往目的地所走的路程s(千米)隨時(shí)間t(分)變化的函數(shù)圖象,以下說法:①甲比乙提前12分到達(dá);②甲的平均速度為15千米/時(shí);③甲乙相遇時(shí),乙走了6千米;④乙出發(fā)6分鐘后追上甲.其中正確的有( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長線上,且BE=CD,EPAC交直線CD于點(diǎn)P,交直線AB于點(diǎn)F,ADP=ACB.

(1)圖1中是否存在與AC相等的線段?若存在,請找出,并加以證明,若不存在,說明理由;

(2)若將點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長線上改為點(diǎn)D在線段BA延長線上,點(diǎn)E在線段BC延長線上,其他條件不變(如圖2).當(dāng)∠ABC=90°,BAC=60°,AB=2時(shí),求線段PE的長.

查看答案和解析>>

同步練習(xí)冊答案