在▱ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
【考點(diǎn)】平行四邊形的判定與性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的判定與性質(zhì);菱形的判定與性質(zhì).
【專題】幾何綜合題;壓軸題.
【分析】(1)根據(jù)AF平分∠BAD,可得∠BAF=∠DAF,利用四邊形ABCD是平行四邊形,求證∠CEF=∠F即可.
(2)根據(jù)∠ABC=90°,G是EF的中點(diǎn)可直接求得.
(3)分別連接GB、GC,求證四邊形CEGF是平行四邊形,再求證△ECG是等邊三角形.
由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求證△BEG≌△DCG,然后即可求得答案
【解答】(1)證明:如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:連接GC、BG,
∵四邊形ABCD為平行四邊形,∠ABC=90°,
∴四邊形ABCD為矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰直角三角形,
∵G為EF中點(diǎn),
∴EG=CG=FG,CG⊥EF,
∵△ABE為等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG與△DCG中,
∵,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB為等腰直角三角形,
∴∠BDG=45°.
(3)解:延長AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF為等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四邊形AHFD為菱形
∴△ADH,△DHF為全等的等邊三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD與△GFD中,
∵,
∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°
【點(diǎn)評】此題主要考查平行四邊形的判定方法,全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),菱形的判定與性質(zhì)等知識點(diǎn),應(yīng)用時(shí)要認(rèn)真領(lǐng)會(huì)它們之間的聯(lián)系與區(qū)別,同時(shí)要根據(jù)條件合理、靈活地選擇方法.同學(xué)們在解決此類問題時(shí),可以通過以下的步驟進(jìn)行思考和分析:(1)通過測量或特殊情況的提示進(jìn)行猜想;(2)根據(jù)猜想的結(jié)果進(jìn)行聯(lián)想(如60度角可以聯(lián)想到等邊三角形,45度角可以聯(lián)想到等腰直角三角形等);(3)在聯(lián)想的基礎(chǔ)上根據(jù)已知條件利用幾何變換(如旋轉(zhuǎn)、平移、軸對稱等)構(gòu)造全等解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,從圓O外一點(diǎn)P引圓O的兩條切線PA,PB,切點(diǎn)分別為A,B.如果∠APB=60°,PA=8,那么弦AB的長是( )
A.4 B.8 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列方程中,關(guān)于x的一元二次方程是( 。
A.a(chǎn)x2+bx+c=0 B.(x﹣3)2=4(x﹣3) C. D.x2+2x=x2﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com