已知ABCD中的對角線相交于點(diǎn)O,分別添加下列條件:A.∠ABC=90°,B.AC⊥BD,C.AB=BC,D.AC平分∠BAD,E.AO=OD,使得ABCD是菱形的條件的序號是_____________.

答案:BCD
解析:

BCD


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點(diǎn)在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有∠B=
1
2
∠1
,∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補(bǔ).
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點(diǎn),如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下面推理過程的括號內(nèi)填上推理的依據(jù)
已知,如圖所示,在?ABCD中,BF=DE.
求證:∠EAF=∠ECF
證明:∵四邊形ABCD是平行四邊形(
已知
已知

∴DC=AB(
平行四邊形的對邊相等
平行四邊形的對邊相等

DC∥AB(
平行四邊形的對邊相互平行
平行四邊形的對邊相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代換
等量代換

即AF=CE(
等量代換
等量代換

∴AF 
.
CE
∴四邊形AFCE是平行四邊形(
對邊平行且相等的四邊形是平行四邊形
對邊平行且相等的四邊形是平行四邊形

∴∠EAF=∠ECF(
平行四邊形的對角相等
平行四邊形的對角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是平行四邊形,則下列結(jié)論中哪一個不滿足平行四邊形的性質(zhì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為1,點(diǎn)E是射線DA一動點(diǎn)(DE>1),連結(jié)BE,以BE為邊在BE上方作正方形BEFG,設(shè)M為正方形BEFG的中心,如果定義:只有一組對角是直角的四邊形叫做損矩形.
(1)試找出圖中的一個損矩形并簡單說明理由.
(2)連接AM,無論點(diǎn)E位置怎樣變化,求證:DB∥AM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們學(xué)過圓內(nèi)接三角形,同樣,四個頂點(diǎn)在圓上的四邊形是圓內(nèi)接四邊形,下面我們來研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有數(shù)學(xué)公式,數(shù)學(xué)公式.∵∠1+∠2=360°∴數(shù)學(xué)公式,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對角(相對的兩個角)互補(bǔ).
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個外角,請你探究外角∠DCE與它的相鄰內(nèi)角的對角(簡稱內(nèi)對角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長線上的點(diǎn),如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

同步練習(xí)冊答案