如圖,△ABC中,DE∥BC,CD、BE交于點(diǎn)F,如果EF:BF=2;5,那么AE:EC=
2:3
2:3
分析:由DE∥BC,即可得△ADE∽△ABC,△DEF∽△CBF,又由相似三角形的對(duì)應(yīng)邊成比例,即可得AE:AC=DE:BC=EF:BF=2:5,即可求得AE:EC的值.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,△DEF∽△CBF,
∴AE:AC=DE:BC,DE:BC=EF:BF=2:5,
∴AE:AC=2:5,
∴AE:EC=2:3.
故答案為:2:3.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意比例線段的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案