【題目】綜合題。
(1)如圖①,△ABC中,點D、E在邊BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度數(shù);②∠DAE的度數(shù).
(2)如圖②,若把(1)中的條件“AD⊥BC”變成“F為AE延長線上一點,且FD⊥BC”,其他條件不變,求出∠DFE的度數(shù).
(3)在△ABC中,AE平分∠BAC,若F為EA延長線上一點,F(xiàn)D⊥BC,且∠C=α,∠B=β(β>α),試猜想∠DFE的度數(shù)(用α,β表示),請自己作出對應(yīng)圖形并說明理由.
【答案】
(1)解:如圖(1).
∵AD⊥BC,
∴∠ADB=90°,
∴∠BAD=90°﹣∠B=90°﹣60°=30°,
∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,
而AE平分∠BAC,
∴∠BAE= ∠BAC= ×80°=40°,
∴∠DAE=∠BAE﹣∠BAD=40°﹣30°=10°;
(2)解:如圖2中,作AH⊥BC于H.
由(1)可知∠HAE=10°,
∵AH∥EF,
∴∠DFE=∠HAE=10°
(3)解:結(jié)論:∠DFE= (∠B﹣∠C).理由如下:
如圖3中,作AH⊥BC于H,F(xiàn)D⊥BC于D.
∵∠HAE=∠EAB﹣∠BAH,∠BAH=90°﹣∠B,∠BAE= (180°﹣∠B﹣∠C),
∴∠HAE=90°﹣ ∠B﹣ ∠C﹣(90°﹣∠B)
= (∠B﹣∠C),
∵AH∥FD,
∴∠DFE=∠HAE,
∴∠DFE= (∠B﹣∠C).
【解析】(1)如圖1中,求出∠BAD,∠BAE,根據(jù)∠DAE=∠BAE﹣∠BAD即可解決問題.(2)如圖2中,作AH⊥BC于H.利用(1)中結(jié)論,再證明∠DFE=∠HAE即可.(3)結(jié)論:∠DFE= (∠B﹣∠C).如圖3中,作AH⊥BC于H,F(xiàn)D⊥BC于D.由∠HAE=∠EAB﹣∠BAH,∠BAH=90°﹣∠B,∠BAE= (180°﹣∠B﹣∠C)推出∠HAE=90°﹣ ∠B﹣ ∠C﹣(90°﹣∠B)= (∠B﹣∠C),由AH∥FD,推出∠DFE=∠HAE,即可解決問題.
【考點精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識可以得到問題的答案,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)下列3×3網(wǎng)格都是由9個相同小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形。
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.等弧所對的圓心角相等B.優(yōu)弧一定大于劣弧
C.經(jīng)過三點可以作一個圓D.相等的圓心角所對的弧相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DB EC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,把△BCD沿對角線BD折疊得到△BED,線段BE與AD相交于點P,若AB=2,BC=4.
(1)BD=;
(2)點P到BD的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圓柱的底面半徑為3cm,母線長為5cm,則圓柱的側(cè)面積是( )
A.30cm2
B.30πcm2
C.15cm2
D.15πcm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com