如圖,已知直線y=3x-3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
【答案】分析:(1)根據(jù)直線解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),然后將點(diǎn)A及點(diǎn)B的坐標(biāo)代入拋物線解析式,可得出b、c的值,求出拋物線解析式;
(2)由(1)求得的拋物線解析式,可求出點(diǎn)C的坐標(biāo),繼而求出AC的長度,代入三角形的面積公式即可計算;
(3)根據(jù)點(diǎn)M在拋物線對稱軸上,可設(shè)點(diǎn)M的坐標(biāo)為(-1,m),分三種情況討論,①M(fèi)A=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.
解答:解:(1)∵直線y=3x-3分別交x軸、y軸于A、B兩點(diǎn),
∴可得A(1,0),B(0,-3),
把A、B兩點(diǎn)的坐標(biāo)分別代入y=x2+bx+c得:,
解得:
∴拋物線解析式為:y=x2+2x-3.

(2)令y=0得:0=x2+2x-3,
解得:x1=1,x2=-3,
則C點(diǎn)坐標(biāo)為:(-3,0),AC=4,
故可得S△ABC=AC×OB=×4×3=6.

(3)拋物線的對稱軸為:x=-1,假設(shè)存在M(-1,m)滿足題意:
討論:
①當(dāng)MA=AB時,,
解得:,
∴M1(-1,),M2(-1,-);
②當(dāng)MB=BA時,,
解得:M3=0,M4=-6,
∴M3(-1,0),M4(-1,-6)(不合題意舍去),
③當(dāng)MB=MA時,,
解得:m=-1,
∴M5(-1,-1),
答:共存在4個點(diǎn)M1(-1,),M2(-1,-),M3(-1,0),M4(-1,-1)使△ABM為等腰三角形.
點(diǎn)評:本題考查了二次函數(shù)的綜合題,涉及了待定系數(shù)法求二次函數(shù)解析式、等腰三角形的性質(zhì)及三角形的面積,難點(diǎn)在第三問,注意分類討論,不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案