【題目】如圖,已知AC、EC分別為四邊形ABCD和EFCG的對(duì)角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=90°,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),連接BF.
(1)求證:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的長(zhǎng).
【答案】
(1)解:∵四邊形ABCD和EFCG均為正方形,
∴ = ,
又∵∠ACE+∠BCE=∠BCF+∠BCE=45°,
∴∠ACE=∠BCF,
∴△CAE∽△CBF
(2)解:∵△CAE∽△CBF,
∴∠CAE=∠CBF, ,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
又∵ = ,AE=2
∴ = ,
∴BF= ,
∴EF2=BE2+BF2=3,
∴EF= ,
∵CE2=2EF2=6,
∴CE= .
【解析】(1)首先根據(jù)四邊形ABCD和EFCG均為正方形,可得 = ,∠ACE=∠BCF;然后根據(jù)相似三角形判定的方法,推得△CAE∽△CBF即可;(2)首先根據(jù)△CAE∽△CBF,判斷出∠CAE=∠△CBF,再根據(jù)∠CAE+∠CBE=90°,判斷出∠EBF=90°;然后在Rt△BEF中,根據(jù)勾股定理,求出EF的長(zhǎng)度,再根據(jù)CE、EF的關(guān)系,求出CE的長(zhǎng)是多少即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購(gòu)買不超過(guò)10件時(shí),售價(jià)不變;若一次性購(gòu)買超過(guò)10件時(shí),每多買1件,所買的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購(gòu)買服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)顧客一次性購(gòu)買多少件時(shí),該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=15,AC=12,BC=9,經(jīng)過(guò)點(diǎn)C且與邊AB相切的動(dòng)圓與CB、CA分別相交于點(diǎn)E、F,則線段EF長(zhǎng)度的最小值是( )
A.
B.
C.
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于M,N兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象寫(xiě)出使反比例函數(shù)的值大于一次函數(shù)的值的x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是半圓O的一條弦,以弦AC為折線將弧AC折疊后過(guò)圓心O,⊙O的半徑為2,則圓中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC,CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點(diǎn),求滿足∠ECD=∠ACO的點(diǎn)E的坐標(biāo);
(3)點(diǎn)M在y軸上且位于點(diǎn)C上方,點(diǎn)N在直線BC上,點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),若以點(diǎn)C,M,N,P為頂點(diǎn)的四邊形是菱形,求菱形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足為P.
(1)請(qǐng)作出Rt△ABC的外接圓⊙O;(保留作圖痕跡,不寫(xiě)作法)
(2)點(diǎn)D在⊙O上嗎?說(shuō)明理由;
(3)試說(shuō)明:AC平分∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:
①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正確的結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com