【題目】如圖,在一張矩形紙片中,對(duì)角線,點(diǎn)分別是和的中點(diǎn),現(xiàn)將這張紙片折疊,使點(diǎn)落在上的點(diǎn)處,折痕為,若的延長(zhǎng)線恰好經(jīng)過(guò)點(diǎn),則點(diǎn)到對(duì)角線的距離為( ).
A.B.C.D.
【答案】B
【解析】
設(shè)DH與AC交于點(diǎn)M,易得EG為△CDH的中位線,所以DG=HG,然后證明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后設(shè)BH=a,則BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜邊AM上的高即為G到AC的距離.
如圖,設(shè)DH與AC交于點(diǎn)M,過(guò)G作GN⊥AC于N,
∵E、F分別是CD和AB的中點(diǎn),
∴EF∥BC
∴EG為△CDH的中位線
∴DG=HG
由折疊的性質(zhì)可知∠AGH=∠B=90°
∴∠AGD=∠AGH=90°
在△ADG和△AHG中,
∵DG=HG,∠AGD=∠AGH,AG=AG
∴△ADG≌△AHG(SAS)
∴AD=AH,AG=AB,∠DAG=∠HAG
由折疊的性質(zhì)可知∠HAG=∠BAH,
∴∠BAH=∠HAG=∠DAG=∠BAD=30°
設(shè)BH=a,
在Rt△ABH中,∠BAH=30°
∴AH=2a
∴BC=AD=AH=2a,AB=
在Rt△ABC中,AB2+BC2=AC2
即
解得
∴DH=2GH=2BH=,AG=AB=
∵CH∥AD
∴△CHM∽△ADM
∴
∴AM=AC=,HM=DH=
∴GM=GH-HM=
在Rt△AGM中,
∴
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB′C′的位置,連接C′B.
(1)請(qǐng)你在圖中把圖補(bǔ)畫(huà)完整;
(2)求C′B的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過(guò)A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關(guān)系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB為⊙O的直徑,AC與⊙O相切于點(diǎn)A,BC與⊙O交于點(diǎn)D,點(diǎn)F是直徑AB下方半圓上一點(diǎn)(不與A,B重合),連接DF,交AB于點(diǎn)E,
(1)求證:∠C=∠F;
(2)如圖2,若DF=DB,連接AF.
①求證:∠FAE=2∠AFE;
②作BH⊥FD于點(diǎn)G,與AF交于點(diǎn)H.若AH=2HF,CD=1,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,老師提出問(wèn)題:如圖1,有一張長(zhǎng),寬的長(zhǎng)方形紙板,在紙板的四個(gè)角裁去四個(gè)相同的小正方形,然后把四邊折起來(lái),做成-一個(gè)無(wú)蓋的盒子,問(wèn)小正方形的邊長(zhǎng)為多少時(shí),盒子的體積最大.下 面是探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)設(shè)小正方形的邊長(zhǎng)為,體積為,根據(jù)長(zhǎng)方體的體積公式得到和的關(guān)系式 ;
(2)確定自變量的取值范圍是
(3)列出與的幾組對(duì)應(yīng)值.
··· | |||||||||||
··· |
(4)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn)畫(huà)出該函數(shù)的圖象如圖2,結(jié)合畫(huà)出的函數(shù)圖象,當(dāng)小正方形的邊長(zhǎng)約為 時(shí), 盒子的體積最大,最大值約為.(估讀值時(shí)精確到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料
材料1:若一個(gè)自然數(shù),從左到右各位數(shù)上的數(shù)字與從右到左各位數(shù)上的數(shù)字對(duì)應(yīng)相同,則稱為“對(duì)稱數(shù)”.
材料2:對(duì)于一個(gè)三位自然數(shù),將它各個(gè)數(shù)位上的數(shù)字分別2倍后取個(gè)位數(shù)字,得到三個(gè)新的數(shù)字,,,我們對(duì)自然數(shù)規(guī)定一個(gè)運(yùn)算:.
例如:是一個(gè)三位的“對(duì)稱數(shù)”,其各個(gè)數(shù)位上的數(shù)字分別2倍后取個(gè)位數(shù)字分別是:2、8、2.
則.
請(qǐng)解答:
(1)一個(gè)三位的“對(duì)稱數(shù)”,若,請(qǐng)直接寫(xiě)出的所有值, ;
(2)已知兩個(gè)三位“對(duì)稱數(shù)”,若能被11整數(shù),求的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖像過(guò)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),直線垂直線段于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在反比例函數(shù)的圖象上,則的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過(guò)點(diǎn)C,M為EF的中點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)x=3時(shí),EC<EM
B.當(dāng)y=9時(shí),EC>EM
C.當(dāng)x增大時(shí),BEDF的值增大
D.當(dāng)x變化時(shí),四邊形BCDA的面積不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,⊙O的直徑AB與弦CD相交于點(diǎn)E,且E為CD中點(diǎn),過(guò)點(diǎn)B作CD的平行線交弦AD的延長(zhǎng)線于點(diǎn)F .
(1)求證:BF是⊙O的切線;
(2)連結(jié)BC,若⊙O的半徑為2,tan∠BCD=,求線段AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com