【題目】觀察猜想:(1)如圖①,在RtABC中,∠BAC90°,ABAC3,點(diǎn)D與點(diǎn)A重合,點(diǎn)E在邊BC上,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接BFBEBF的位置關(guān)系是   ,BE+BF   ;

探究證明:(2)在(1)中,如果將點(diǎn)D沿AB方向移動(dòng),使AD1,其余條件不變,如圖②,判斷BEBF的位置關(guān)系,并求BE+BF的值,請(qǐng)寫出你的理由或計(jì)算過程;

拓展延伸:(3)如圖③,在△ABC中,ABAC,∠BACa,點(diǎn)D在邊BA的延長(zhǎng)線上,BDn,連接DE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDFa,連接BF,則BE+BF的值是多少?請(qǐng)用含有n,a的式子直接寫出結(jié)論.

【答案】觀察猜想:(1BFBE,BC;探究證明:(2BFBE,BF+BE,見解析;拓展延伸:(3BF+BE.

【解析】

1)只要證明△BAF≌△CAE,即可解決問題;

2)如圖②中,作DHACBCH.利用(1)中結(jié)論即可解決問題;

3)如圖③中,作DHACBC的延長(zhǎng)線于H,作DMBCM.只要證明△BDF≌△HDE,可證BF+BEBH,即可解決問題.

1)如圖①中,

∵∠EAF=∠BAC90°,

∴∠BAF=∠CAE,

AFAEABAC,

∴△BAF≌△CAE,

∴∠ABF=∠C,BFCE,

ABAC,∠BAC90°,

∴∠ABC=∠C45°,

∴∠FBE=∠ABF+∠ABC90°,BCBE+ECBE+BF,

故答案為BFBEBC;

2)如圖②中,作DHACBCH,

DHAC,

∴∠BDH=∠A90°,△DBH是等腰直角三角形,

由(1)可知,BFBE,BF+BEBH

ABAC3,AD1

BDDH2,

BH2,

BF+BEBH2

3)如圖③中,作DHACBC的延長(zhǎng)線于H,作DMBCM,

ACDH

∴∠ACH=∠H,∠BDH=∠BACα,

ABAC,

∴∠ABC=∠ACB

∴∠DBH=∠H,

DBDH,

∵∠EDF=∠BDHα,

∴∠BDF=∠HDE,

DFDEDBDH,

∴△BDF≌△HDE,

BFEH

BF+BEEH+BEBH,

DBDH,DMBH

BMMH,∠BDM=∠HDM

BMMHBDsin

BF+BEBH2nsin

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張僅一面分別標(biāo)有1,2,3,4的不透明紙片,除所標(biāo)數(shù)字不同外,其余都完全相同.

1)將四張紙片分成兩組,標(biāo)有1、3的為第一組,標(biāo)有24的為第二組,背面向上,放在桌上,從兩組中各隨機(jī)抽取一張,求兩次抽取數(shù)字和為5的概率;

2)將四張紙片洗勻后背面向上,放在桌上,一次性從中隨機(jī)抽取兩張,用樹形圖法或列表法,求所抽取數(shù)字和為5的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解

利用旋轉(zhuǎn)變換解決數(shù)學(xué)問題是一種常用的方法.如圖1,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),PA1,PB,PC2.求∠BPC的度數(shù).

為利用已知條件,不妨把△BPC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△AP′C,連接PP′,則PP′的長(zhǎng)為_____;在△PAP′中,易證∠PAP′90°,且∠PP′A的度數(shù)為_____,綜上可得∠BPC的度數(shù)為_____;

(2)類比遷移

如圖2,點(diǎn)P是等腰RtABC內(nèi)的一點(diǎn),∠ACB90°,PA2,PB,PC1,求∠APC的度數(shù);

(3)拓展應(yīng)用

如圖3,在四邊形ABCD中,BC3,CD5ABACAD.∠BAC2ADC,請(qǐng)直接寫出BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)嘗試探究

如圖1,等腰RtABC的兩個(gè)頂點(diǎn)B,C在直線MN上,點(diǎn)D是直線MN上一個(gè)動(dòng)點(diǎn)(點(diǎn)D在點(diǎn)C的右邊),BC=3,BD=m,在ABC同側(cè)作等腰RtADE,∠ABC=ADE=90°,EF MN于點(diǎn)F,連結(jié)CE.

①求DF的長(zhǎng);

②在判斷ACCE是否成立時(shí),小明同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:

思路一:先證CF=EF,求出∠ECF=45°,從而證得結(jié)論成立.

思路二:先求DF,EF的長(zhǎng),再求CF的長(zhǎng),然后證AC2+CE2=AE2,從而證得結(jié)論成立.

請(qǐng)你任選一種思路,完整地書寫本小題的證明過程.(如用兩種方法作答,則以第一種方法評(píng)分)

2)拓展探究

(1)中的兩個(gè)等腰直角三角形都改為有一個(gè)角為的直角三角形,如圖2, ABC=ADE=90°,∠BAC=DAE=30°,BC=3,BD=m,當(dāng)4≤m≤6時(shí),求CE長(zhǎng)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);

(3)若BC= 4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,∠A30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線ACB運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以vcm/s的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為xs),△APQ的面積為ycm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示,有下列結(jié)論:v1sinB;圖象C2段的函數(shù)表達(dá)式為y=﹣x2+x;APQ面積的最大值為8,其中正確有( 。

A.①②B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于A、B兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)yk≠0)的圖象于點(diǎn)C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案