設等腰三角形的一個底角是,則的取值范圍是
[     ]
A.0°<≤45°
B.0°<≤90°
C.0°<<90°
D.90°<<180°
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖平面直角坐標系中,半徑為5的⊙O過點D、H,且DH⊥x軸,DH=8.
(1)求點H的坐標;
精英家教網
(2)如圖,點A為⊙0和x軸負半軸的交點,P為弧AH上任意一點,連接PD、PH,AM⊥PH交HP的延長線于M,求
PD-PHPM
的值;
精英家教網

(3)如圖,設⊙O與x軸正半軸交點為P,點E、F是線段OP上的動點(與點P不重合),連接并延長DE、DF交⊙O于點B、C,直線BC交x軸于點G,若△DEF是以EF為底的等腰三角形,當E、F兩點在OP上運動時(與點P不重合),試探索:
①∠OGC+∠DOG是定值;②∠GBD+∠DOG是定值;哪一個結論正確,說明理由并求出其定值.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•資陽)如圖,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.設動點P、Q、R在梯形的邊上,始終構成以P為直角頂點的等腰直角三角形,且△PQR的一邊與梯形ABCD的兩底平行.
(1)當點P在AB邊上時,在圖中畫出一個符合條件的△PQR (不必說明畫法);
(2)當點P在BC邊或CD邊上時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•營口)如圖,四邊形ABCD是邊長為60cm的正方形硬紙片,剪掉陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使A、B、C、D四個點重合于圖中的點P,正好形成一個底面是正方形的長方體包裝盒.
(1)若折疊后長方體底面正方形的面積為1250cm2,求長方體包裝盒的高;
(2)設剪掉的等腰直角三角形的直角邊長為x(cm),長方體的側面積為S(cm2),求S與x的函數(shù)關系式,并求x為何值時,S的值最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江模擬)請你設計一個包裝盒,如圖1所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形(E,F(xiàn)在AB上,是被切去的等腰直角三角形斜邊的兩個端點),再沿虛線折起,使得A,B,C,D四個點重合于圖2中的點P,正好形成一個底為正方形的包裝盒,設AE=FB=xcm.
(1)若x=20cm,包裝盒底面正方形面積為
800
800
cm2;側面積為
1600
1600
cm2
(2)設包裝盒側面積為S,
①求S與x之間的函數(shù)關系式;
②若要求包裝盒側面積S最大,問此時x應取何值?并求出最大面積;
(3)試問能否用包裝盒盛放一個底面半徑為15cm,高為15cm的圓柱形工藝品?若不能,說明理由;若能,求出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

設等腰梯的上底為a,下底為b,腰為c.

(1)在等腰梯形中作一個腰為c的等腰三角形,并證明你的作法的合理性;

(2)如果,那么在等腰梯形中能作出幾個腰為c且互不重疊的等腰三角形?如果呢?

查看答案和解析>>

同步練習冊答案