【題目】我們知道,一個(gè)數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)與原點(diǎn)之間的距離就是這個(gè)數(shù)的絕對(duì)值。那么任意兩個(gè)數(shù)與它們?cè)跀?shù)軸上所對(duì)應(yīng)的點(diǎn)之間的距離又有什么關(guān)系呢?
(1)如圖所示,-3,-1,2,4在數(shù)軸上分別對(duì)應(yīng)點(diǎn)。
則①點(diǎn)與原點(diǎn)之間的距離為_______________;②兩點(diǎn)之間的距離為_____________;
③兩點(diǎn)之間的距離為______________;④兩點(diǎn)之間的距離為_______________。
你的結(jié)論:如果兩個(gè)數(shù)在數(shù)軸上分別對(duì)應(yīng)點(diǎn),那么與兩點(diǎn)之間的距離表示為______________________。(用含的式子表示)
(2)利用(1)的結(jié)論解決下列問(wèn)題:
已知數(shù)軸上點(diǎn)對(duì)應(yīng),點(diǎn)對(duì)應(yīng)3,且與之間的距離是8,求的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)當(dāng)t=4時(shí),求△BMN面積;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐探究題
(1)觀察下列有規(guī)律的數(shù):,,,,,…根據(jù)規(guī)律可知
①第10個(gè)數(shù)是________; 是第________個(gè)數(shù).
②計(jì)算________.(直接寫(xiě)出答案即可)
(2)是不為1的有理數(shù),我們把稱(chēng)為的差倒數(shù).如:2的差倒數(shù)是,的差倒數(shù)是.已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類(lèi)推,是的差倒數(shù),則 ________.
(3)高斯函數(shù)[x],也稱(chēng)為取整函數(shù),即[x]表示不超過(guò)x的最大整數(shù).
例如:[2.3]=2,[-1.5]=-2.則下列結(jié)論:①[-2.1]+[1]=-2; ②[x]+[-x]=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度數(shù).
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)C,D分別作BD,AC的平行線,兩線相交于點(diǎn)P.
(1)求證:四邊形CODP是菱形;
(2)當(dāng)矩形ABCD的邊AD,DC滿足什么關(guān)系時(shí),菱形CODP是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù),則下列結(jié)論正確的是( )
A. 其圖象分別位于第一、三象限
B. 當(dāng)時(shí),隨的增大而減小
C. 若點(diǎn)在它的圖象上,則點(diǎn)也在它的圖象上
D. 若點(diǎn)都在該函數(shù)圖象上,且,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)拓展課上,老師讓同學(xué)們探討特殊四邊形的做法:
如圖,先作線段,作射線(為銳角),過(guò)作射線平行于,再作和的平分線分別交和于點(diǎn)和,連接,則四邊形為菱形;
(1)你認(rèn)為該作法正確嗎?請(qǐng)說(shuō)明理由.
(2)若,并且四邊形的面積為,在上取一點(diǎn),使得.請(qǐng)問(wèn)圖中存在這樣的點(diǎn)嗎?若存在,則求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)開(kāi)展演講比賽,學(xué)校決定購(gòu)買(mǎi)一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價(jià)相同:筆記本定價(jià)為每本25元,鋼筆每支定價(jià)6元,但是他們的優(yōu)惠方案不同,甲店每買(mǎi)一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.已知七年級(jí)需筆記本20本,鋼筆x支(大于20支).問(wèn):
(1)在甲店購(gòu)買(mǎi)需付款 元,在乙店購(gòu)買(mǎi)需付款 元;
(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)到哪家商店購(gòu)買(mǎi)較為合算?
(3)當(dāng)x=40時(shí),請(qǐng)?jiān)O(shè)計(jì)一種方案,使購(gòu)買(mǎi)最省錢(qián)?算出此時(shí)需要付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1);
(2)﹣23+(﹣3)×|﹣4|﹣(﹣4)2+(﹣2)
(3)3x2﹣(2x2﹣2x)+(4x﹣3x2)
(4)4(a2﹣5a)﹣5(2a2﹣3a)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com