【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,PBC邊上一動點,PGAC于點G,PHAB于點H

(1)求證:四邊形AGPH是矩形;

(2)在點P的運動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.

【答案】(1)證明見解析;(2)見解析.

【解析】

1)根據(jù)矩形的定義證明結論;

2)連結AP.當APBCAP最短,結合矩形的兩對角線相等和面積法來求GH的值.

1)證明∵AC=9AB=12BC=15,

AC2=81AB2=144,BC2=225

AC2+AB2=BC2,

∴∠A=90°

PGACPHAB,

∴∠AGP=AHP=90°

∴四邊形AGPH是矩形;

2)存在.理由如下:

連結AP

∵四邊形AGPH是矩形,

GH=AP

∵當APBCAP最短.

9×12=15AP

AP=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:數(shù)軸上有、兩點,分別對應的數(shù)為,已知互為相反數(shù),點為數(shù)軸上一動點,對應為

(1)若點到點和點的距離相等,求點對應的數(shù);

(2)數(shù)軸上是否存在點,使點到點和點的距離之和為5?若存在,請求出的值,若不存在,請說明理由;

(3)當點以每分鐘1個單位長度的速度從點向左運動,點以每分鐘5個單位長度向左運動,點以每分鐘20個單位長度的速度向左運動,問幾分鐘時點到點、點的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BCE,F兩點,連結BE,DF

(1)求證:DOE≌△BOF

(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新規(guī)定:為線段上一點,當時,我們就規(guī)定為線段三倍距點。如圖,在數(shù)軸上,點所表示的數(shù)為-3,點所表示的數(shù)為5

1)確定點所表示的數(shù)為___________

2)若動點從點出發(fā),沿射線方向以每秒2個單位長度的速度運動,設運動時間為秒.

①當點與點重合時,求的值.

②求的長度(用含的代數(shù)式表示)

③當點為線段三倍距點時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形,點是線段延長線上一點,聯(lián)結,其中.若將繞著點逆時針旋轉使得第一次重合時,點落在點(圖中未畫出).求:在此過程中,

1旋轉的角度等于 ______________

2)線段掃過的平面部分的面積為__________(結果保留)

3)聯(lián)結,則的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x,y的方程組給出以下結論:①當a=3時,方程組的解也是方程2x-y=a+13的解;②無論a取何值,x,y的值都不可能互為相反數(shù);③xy的自然數(shù)的解有2對;④若z=x+3y,則z的最大值是36.其中正確的是______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某九年一貫制學校在六年級和九年級的男生中分別隨機抽取40名學生測量他們的身高,將數(shù)據(jù)分組整理后,繪制的頻數(shù)分布直方圖如下:其中兩條縱向虛線上端的數(shù)值分別是每個年級抽出的40名男生身高的平均數(shù),根據(jù)統(tǒng)計圖提供的信息,下列結論不合理的是(

A. 六年級40名男生身高的中位數(shù)在第153~158cm

B. 可以估計該校九年級男生的平均身高比六年級的平均身高高出18.6cm

C. 九年級40名男生身高的中位數(shù)在第168~173cm

D. 可以估計該校九年級身高不低于158cm但低于163cm的男生所占的比例大約是5%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°,點E、F分別為ADDC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)字-1,-2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.

(1)小紅摸出標有數(shù)字3的小球的概率是________;

(2)請用列表或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結果;

(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝,點P(x,y)在第二象限或第四象限小穎獲勝,請分別求出兩人獲勝的概率.

查看答案和解析>>

同步練習冊答案