【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:
電影類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評(píng)率 |
注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?
答:______.
【答案】 第五類電影的好評(píng)率增加0.1,第二類電影的好評(píng)率減少0.1
【解析】
(1)計(jì)算第四類電影中獲得好評(píng)的電影部數(shù),代入公式可得概率.
(2)根據(jù)每部電影獲得好評(píng)的部數(shù)作出合理建議.
(1)第四類電影中獲得好評(píng)的電影部數(shù)為:
抽到的這部電影是獲得好評(píng)的第四類電影的概率是
(2)第五類電影的電影部數(shù)最多,第二類電影的電影部數(shù)最少,則第五類電影的好評(píng)率增加0.1,第二類電影的好評(píng)率減少0.1,可使改變投資策略后總的好評(píng)率達(dá)到最大
故答案為:(1). (2). 第五類電影的好評(píng)率增加0.1,第二類電影的好評(píng)率減少0.1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校“兩會(huì)”知識(shí)競(jìng)賽培訓(xùn)活動(dòng)中,在相同條件下對(duì)甲、乙兩名學(xué)生進(jìn)行了10次測(cè)驗(yàn).
①收集數(shù)據(jù):分別記錄甲、乙兩名學(xué)生10次測(cè)驗(yàn)成績(jī)(單位:分)
次數(shù) 成績(jī) 學(xué)生 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 74 | 84 | 89 | 83 | 86 | 81 | 86 | 84 | 86 | 86 |
乙 | 82 | 73 | 81 | 76 | 81 | 87 | 81 | 90 | 92 | 96 |
②整理數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
統(tǒng)計(jì)量 學(xué)生 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 83.9 | ______ | 86 | 15.05 |
乙 | 83.9 | 81.5 | ______ | 46.92 |
③分析數(shù)據(jù):根據(jù)甲、乙兩名學(xué)生10次測(cè)驗(yàn)成績(jī)繪制折線統(tǒng)計(jì)圖:
④得出結(jié)論:結(jié)合上述統(tǒng)計(jì)全過程,回答下列問題:
(1)補(bǔ)全②中的表格.
(2)判斷甲、乙兩名學(xué)生中, (填甲或乙)的成績(jī)比較穩(wěn)定,說明判斷依據(jù): .
(3)如果你是決策者,從甲、乙兩名學(xué)生中選擇一人代表學(xué)校參加知識(shí)競(jìng)賽,你會(huì)選擇______(填“甲”或“乙),理由是:____ __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線,點(diǎn),點(diǎn),動(dòng)點(diǎn)在直線上,動(dòng)點(diǎn)、在軸正半軸上,連接、、.
(1)若點(diǎn),求直線的解析式;
(2)如圖,當(dāng)周長(zhǎng)最小時(shí),連接,求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是ABCD對(duì)角線AC上的一點(diǎn),連接DP并延長(zhǎng)DP交邊AB于點(diǎn)E,連接BP并延長(zhǎng)BP交AD于點(diǎn)F,交CD的延長(zhǎng)線于點(diǎn)G,已知.
(1)求的值.
(2)若四邊形ABCD是菱形.
①求證:△APB≌△APD;
②若DP的長(zhǎng)為6,求GF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,p隨V的變化情況如表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)寫出一個(gè)符合表格數(shù)據(jù)的p關(guān)于V的函數(shù)解析式
(2)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,依照?/span>1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,D是線段AC延長(zhǎng)線上一點(diǎn),連接BD,過點(diǎn)A作于E.
求證:.
將射線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)后,所得的射線與線段BD的延長(zhǎng)線交于點(diǎn)F,連接CE.
依題意補(bǔ)全圖形;
用等式表示線段EF,CE,BE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)想知道湖中兩個(gè)小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測(cè)點(diǎn)M處,測(cè)得亭A在點(diǎn)M的北偏東30°,亭B在點(diǎn)M的北偏東60°,當(dāng)小明由點(diǎn)M沿小道I向東走60米時(shí),到達(dá)點(diǎn)N處,此時(shí)測(cè)得亭A恰好位于點(diǎn)N的正北方向,繼續(xù)向東走30米時(shí)到達(dá)點(diǎn)Q處,此時(shí)亭B恰好位于點(diǎn)Q的正北方向,根據(jù)以上測(cè)量數(shù)據(jù),請(qǐng)你幫助小強(qiáng)計(jì)算湖中兩個(gè)小亭A、B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2kx﹣k2+k+3(k為常數(shù))的頂點(diǎn)縱坐標(biāo)為4.
(1)求k的值;
(2)設(shè)拋物線與直線y=﹣(x﹣3)(m≠0)兩交點(diǎn)的橫坐標(biāo)為x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)兩點(diǎn)在動(dòng)點(diǎn)M(m,n)所形成的曲線上,求直線AB的解析式;
(3)將(2)中的直線AB繞點(diǎn)(3,0)順時(shí)針旋轉(zhuǎn)45°,與拋物線x軸上方的部分相交于點(diǎn)C,請(qǐng)直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E是BC邊的中點(diǎn),動(dòng)點(diǎn)M在CD邊上運(yùn)動(dòng),以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,∠BAD=60°,則PA的最小值是( )
A. B. 2 C. 2﹣2 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com