在Rt△ABC中,∠ACB=90°,CD⊥AB,如果BD=m,∠A=α,那么AD等于( 。
A.msin2αB.mcos2αC.mtan2αD.mcot2α
∵∠ACB=90°,CD⊥AB,∠A=α,
∴∠BCD=α,
∴CD=
BD
tanα
=
m
tanα
,
∵sinα=
CD
AD
,
∴AD=
CD
tanα
=
m
tanα
tanα
=
m
tan2α
=mcot2α;
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:在△ABC中,∠C=90°,AC:BC=4:3,點D在CB的延長線上,且BD=AB,那么∠ADB的余弦值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在離地面高度5米處引拉線固定電線桿,拉線和地面成60°角,求拉線AC的長以及拉線下端點A與桿底D的距離AD(不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一架飛機由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭D恰好在飛機的正下方,山頭C在飛機前方,俯角為30°.飛機飛行了6千米到B處時,往后測得山頭C、D的俯角分別為60°和30°.已知山頭D的海拔高度為1千米,求山頭C的海拔高度.(精確到0.01千米,已知
3
≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,根據(jù)提供的數(shù)據(jù)回答下列問題.

(1)在圖①中,sinA=______,cosA=______,sin2A+cos2A=______;
在圖②中,sinA1=______,cosA1=______,sin2A1+cos2A1=______;
在圖③中,sinA2=______,cosA2=______,sin2A2+cos2A2=______.
通過以上三個特殊例子,你發(fā)現(xiàn)了什么規(guī)律?用一個一般式子把你發(fā)現(xiàn)的規(guī)律表示出來并加以證明.
(2)在圖①中,tanA=______,
sinA
cosA
=______;
在圖②中,tanA1=______,
sinA1
cosA1
=______;
在圖③中,tanA2=______,
sinA2
cosA2
=______.
通過以上三個特殊例子,你發(fā)現(xiàn)了什么規(guī)律?用一個一般式子表示你發(fā)現(xiàn)的規(guī)律并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時段內(nèi),甲樓對乙樓的采光的影響情況.假設(shè)某一時刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h;
(2)當(dāng)α=30°時,甲樓樓頂B的影子落在乙樓的第幾層?從此時算起,若α每小時增加10°,幾小時后,甲樓的影子剛好不影響乙樓采光?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

2011年3月10日,云南盈江縣發(fā)生里氏5.8級地震.蕭山金利浦地震救援隊接到上級命令后立即趕赴震區(qū)進行救援.救援隊利用生命探測儀在某建筑物廢墟下方探測到點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點A、B相距3米,探測線與地面的夾角分別是30°和60°(如圖),試確定生命所在點C的深度.(結(jié)果精確到0.1米,參考數(shù)據(jù):
2
≈1.41,
3
≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某人從樓頂A看地面C,D兩點,測得它們的俯角分別是60°和45°.已知CD=8m,B,C,D在同一直線上,求樓高AB.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案