在矩形ABCD中,AB=2,AD=
(1)在邊CD上找一點(diǎn)E,使EB平分∠AEC,并加以說(shuō)明;
(2)若P為BC邊上一點(diǎn),且BP=2CP,連接EP并延長(zhǎng)交AB的延長(zhǎng)線于F.
①求證:點(diǎn)B平分線段AF;
②△PAE能否由△PFB繞P點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)而得到?若能,加以證明,并求出旋轉(zhuǎn)度數(shù);若不能,請(qǐng)說(shuō)明理由.
【答案】分析:(1)利用E是CD的中點(diǎn),再加上已知邊的長(zhǎng),得出∠AED的余弦為,根據(jù)反三角函數(shù),可知∠AED=60°,同理可知∠CEB=60°,從而求出∠AEB=∠CEB=60°,即EB平分∠AEC.
(2)利用平行線分線段成比例定理,可以得到CE:BF=CP:BP=1:2,即BF=2CE,又AB=CD=2CE,所以點(diǎn)B平分線段AF.因?yàn)镻是三分點(diǎn),結(jié)合已知邊的長(zhǎng),可求出CP和BP的值,再利用勾股定理,可分別求出EP和BP,從而得出EP=BP,再利用SAS可證明△PAE≌△PFB,通過(guò)觀察可知,∠BPE(或∠APF)就是順時(shí)針旋轉(zhuǎn)的角度.
解答:解:(1)當(dāng)E為CD中點(diǎn)時(shí),EB平分∠AEC,
由∠D=90°,DE=1,AD=
推得∠DEA=60°,
同理,∠CEB=60°,從而∠AEB=60°,即EB平分∠AEC;

(2)①∵CE∥BF,BP=2CP,
==,
∴BF=2CE,
在△ADE與△BCE中,,
∴△ADE≌△BCE(AAS),
∴DE=CE,
∴AB=CD=2CE,
∴AB=BF,
即點(diǎn)B平分線段AF;

②能.
證明:∵CP=,CE=1,∠C=90°,
∴EP=
在Rt△ADE中,AE==2,
∴AE=BF,
又∵PB=,
∴PB=PE,
∵∠AEP=∠PBF=90°,
∴△PAE≌△PFB,
∴△PAE可以△PFB按照順時(shí)針?lè)较蚶@P點(diǎn)旋轉(zhuǎn)而得到,
旋轉(zhuǎn)度數(shù)為120°.
點(diǎn)評(píng):本題利用了反三角函數(shù)求角,以及平行線分線段成比例定理、勾股定理、全等三角形的判定和性質(zhì)等有關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點(diǎn)E,EF⊥AD交AD于點(diǎn)F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點(diǎn)不重合的動(dòng)點(diǎn),過(guò)點(diǎn)P的直線交CD的延長(zhǎng)線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點(diǎn),AF的延長(zhǎng)線交DC的延長(zhǎng)線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),連接DE,過(guò)C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個(gè)角的角平分線,E、M、F、N是其交點(diǎn),求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案