【題目】如圖,四邊形ABCD中,點M、N分別在AB、BC上,將BMN沿MN翻折,得FMN,若MF∥AD,FN∥DC,則∠D的度數(shù)為_________
【答案】90
【解析】首先利用平行線的性質(zhì)得出∠BNF=100°,∠FNB=70°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,進而求出∠B的度數(shù)以及得出∠D度數(shù).
解:∵MF∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°,
∴∠BMF=100°,∠FNB=70°,
∵將△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°-50°-35°=95°
∴∠D=360°-100°-70°-90°=95°.
“點睛”此題主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩間工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,M是鐵絲AD的中點,將該鐵絲首尾相接折成△ABC,且∠B=30°,∠C=100°,如圖2.則下列說法正確的是( )
A. 點M在AB上
B. 點M在BC的中點處
C. 點M在BC上,且距點B較近,距點C較遠
D. 點M在BC上,且距點C較近,距點B較遠
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( 。
A.3a2a3=3a6
B.5x4﹣x2=4x2
C.(2a2)3(﹣ab)=﹣8a7b
D.2x2÷2x2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有4個黑球、2個白球,每個球除顏色外都相同,從中任意摸出3個球,下列事件為必然事件的是( 。
A.至少有1個球是黑球
B.至少有1個球是白球
C.至少有2個球是黑球
D.至少有2個球是白球
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com