【題目】如圖,在ABC中,∠BAC=90°,AB=AC,ADBC于點(diǎn)D.

(1)如圖1,點(diǎn)E,F(xiàn)AB,AC上,且∠EDF=90°.求證:BE=AF;

(2)點(diǎn)M,N分別在直線AD,AC上,且∠BMN=90°.

①如圖2,當(dāng)點(diǎn)MAD的延長線上時(shí),求證:AB+AN=AM;

②當(dāng)點(diǎn)M在點(diǎn)A,D之間,且∠AMN=30°時(shí),已知AB=2,直接寫出線段AM的長.

【答案】(1)證明見解析;(2)①證明見解析;②AM=

【解析】1)先判斷出∠BAD=CAD=45°,進(jìn)而得出∠CAD=B,再判斷出∠BDE=ADF,進(jìn)而判斷出BDE≌△ADF,即可得出結(jié)論;

(2)①先判斷出AM=PM,進(jìn)而判斷出∠BMP=AMN,判斷出AMN≌△PMB,即可判斷出AP=AB+AN,再判斷出AP=AM,即可得出結(jié)論;

②先求出BD,再求出∠BMD=60°,最后用三角函數(shù)求出DM,即可得出結(jié)論.

1)∵∠BAC=90°,AB=AC,

∴∠B=C=45°.

ADBC,

BD=CD,BAD=CAD=45°,

∴∠CAD=B,AD=BD.

∵∠EDF=ADC=90°,

∴∠BDE=ADF,

BDE≌△ADF(ASA),

DE=DF;

(2)①如圖1,過點(diǎn)MMPAM,交AB的延長線于點(diǎn)P,

∴∠AMP=90°.

∵∠PAM=45°,

∴∠P=PAM=45°,

AM=PM.

∵∠BMN=AMP=90°,

∴∠BMP=AMN.

∵∠DAC=P=45°,

AMN≌△PMB(ASA),

AN=PB,

AP=AB+BP=AB+AN.

RtAMP中,∠AMP=90°,AM=MP,

AP=AM,

AB+AN=AM;

②在RtABD中,AD=BD=AB=

∵∠BMN=90°,AMN=30°,

∴∠BMD=90°﹣30°=60°.

RtBDM中,DM==

AM=AD﹣DM=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1, ABC中,CDABD,BD: AD:CD=2:3:4,

(1)試說明△ABC是等腰三角形;

(2)已知SABC=40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(),若△DMN的邊與BC平行,求t的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖①是邊長為1的等邊三角形紙板,周長記為C1,沿圖①的底邊剪去一塊邊長為的等邊三角形,得到圖②,周長記為C2,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的),得圖③④,圖n的周長記為Cn,若n≥3,則Cn-Cn-1=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根x1,x2,請用配方法探索有實(shí)數(shù)根的條件,并推導(dǎo)出求根公式,證明x1x2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知上的一個(gè)動(dòng)點(diǎn),

1)問題發(fā)現(xiàn)

如圖1,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),過點(diǎn),垂足為點(diǎn),過點(diǎn),垂足為點(diǎn),且

是全等三角形嗎?請說明理由

②連接,試猜想的形狀,并說明理由;

2)類比探究

如圖2,當(dāng)在線段的延長線上時(shí),過點(diǎn),垂足為點(diǎn),過點(diǎn),垂足為點(diǎn),且,試直接寫出的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(diǎn)(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,4).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)過點(diǎn)D作直線DEy軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)F、G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進(jìn)甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如表:

1)小明爸爸的商店購進(jìn)甲、乙兩種型號口罩各多少袋?

2)該商店第二次以原價(jià)購進(jìn)甲、乙兩種型號口罩,購進(jìn)甲種型號口罩袋數(shù)不變,而購進(jìn)乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動(dòng)獲利不少于2460元,每袋乙種型號的口罩最多打幾折?

查看答案和解析>>

同步練習(xí)冊答案