【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC(頂點在網(wǎng)格線的交點上)的頂點A、C的坐標分別為A(﹣3,4)C(0,2)

(1)請在網(wǎng)格所在的平面內(nèi)建立平面直角坐標系,并寫出點B的坐標;

(2)畫出△ABC關于原點對稱的圖形△A1B1C1;

(3)求△ABC的面積;

(4)在x軸上存在一點P,使PA+PB的值最小,請直接寫出點P的坐標.

【答案】(1)坐標系詳見解析,點B的坐標(﹣2,0);(2)詳見解析;(3)5;(4)P的坐標(﹣2,0).

【解析】

(1)根據(jù)A、C點坐標,作出的平面直角坐標系即可,根據(jù)作出的平面直角坐標系寫出B點的坐標即可;
(2)根據(jù)原點對稱的特點畫出圖形即可;
(3)利用矩形面積減去周圍三角形面積得出即可;
(4)根據(jù)軸對稱的性質(zhì)解答即可.

解:(1)如圖所示:

B的坐標(-2,0);

2)如圖所示,A1B1C1即為所求;

3)△ABC的面積=5;

4)點P的坐標(-20).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD⊥BC于點D,D為BC的中點,連接AB,∠ABC的平分線交AD于點O,連結(jié)OC,若∠AOC=125°,則∠ABC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠B=120°,點MAD的中點,點P由點A出發(fā),沿A→B→C→D作勻速運動,到達點D停止,則APM的面積y與點P經(jīng)過的路程x之間的函數(shù)關系的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,二次函數(shù)y=ax2﹣a(b﹣1)x﹣ab(其中b<﹣1)的圖象與x軸交于點A、B,與y軸交于點C(0,1),過點C的直線交x軸于點D(2,0),交拋物線于另一點E.

(1)用b的代數(shù)式表示a,則a=
(2)過點A作直線CD的垂線AH,垂足為點H.若點H恰好在拋物線的對稱軸上,求該二次函數(shù)的表達式;
(3)如圖②,在(2)的條件下,點P是x軸負半軸上的一個動點,OP=m.在點P左側(cè)的x軸上取點F,使PF=1.過點P作PQ⊥x軸,交線段CE于點Q,延長線段PQ到點G,連接EG、DG.若tan∠GDP=tan∠FQP+tan∠QDP,試判斷是否存在m的值,使△FPQ的面積和△EGQ的面積相等?若存在求出m的值,若不存在則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個單位,得到矩形A1B1C1D1 , 第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個單位,得到矩形A2B2C2D2…,第n次平移將矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長.
(2)若ABn的長為56,求n.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=120°,點D是BC的中點,點E是AB上的一點,點F是AC上的一點,∠EDF=90°,且BE=2,F(xiàn)C=7,則EF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13mB=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)y2= (x>0)的圖象交于A(a,1)、B(1,b)兩點.
(1)求函數(shù)y2的表達式;
(2)觀察圖象,比較當x>0時,y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】科學家為了推測最適合某種珍奇植物生長的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過一定時間后,測試出這種植物高度的增長情況,部分數(shù)據(jù)如表:

溫度t/℃

﹣4

﹣2

0

1

4

植物高度增長量l/mm

41

49

49

46

25

科學家經(jīng)過猜想、推測出l與t之間是二次函數(shù)關系.由此可以推測最適合這種植物生長的溫度為℃.

查看答案和解析>>

同步練習冊答案