【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點的坐標(biāo)分別為B03)和C0,﹣),點Ax軸正半軸上,且滿足∠BAO30°

1)過點CCEAB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將OFG沿FG翻折使點O落在平面內(nèi)的點O處,連接OC,求線段OF的長以及線段OC的最小值;

2)如圖2,點D的坐標(biāo)為D(﹣10),將BDC繞點B順時針旋轉(zhuǎn),使得BCAB于點B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點M,N為平面內(nèi)任意一點,當(dāng)以B、DM、N為頂點的四邊形是菱形時,求點M的坐標(biāo).

【答案】1 ;(2

【解析】

1)解直角三角形求出OFCF,根據(jù)CO′≥CFOF求解即可.

2)分四種情形:①如圖2中,當(dāng)BDBMBD=時,可得菱形MNDB.②如圖3中,當(dāng)BM是菱形的對角線時.③如圖4中,當(dāng)BD是菱形的對角線時.④如圖5中,當(dāng)MD是菱形的對角線時,分別求解即可解決問題.

1)如圖1中,

∵∠AOB=90°,∠OAB=30°,
∴∠CBE=60°,
CEAB
∴∠CEB=90°,∠BCE=30°,
C0-),
OC=OF=OCtan30°=,CF=2OF=3
由翻折可知:FO′=FO=,
CO′≥CF-O′F,
CO′≥,
∴線段O′C的最小值為
2)①如圖2中,當(dāng)B′D′=B′M=BD=時,可得菱形MND′B′

RtAMB′中,AM=2B′M=2,
OM=AM-OA=2-3
M3-2,0).
②如圖3中,當(dāng)B′M是菱形的對角線時,由題意B′M=2OB=6,此時AM=12,OM=12-3,可得M3-12,0).

③如圖4中,當(dāng)B′D′是菱形的對角線時,由∠D′B′M=∠DBO

可得,所以B′M=

則在RTAM B′中,AM=2B′M=,所以OM=OA-AM=3-,所以M3-,0).

④如圖5中,當(dāng)MD′是菱形的對角線時,MB′=B′D′=,可得AM=2,OM=OA+AM=3+2,所以M3+2,0).

綜上所述,滿足條件的點M的坐標(biāo)為(3+20)或(3-12,0)或(3-,0)或(3+2,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,正方形DEFG的頂點D,G分別在AB,AC上,頂點E,F(xiàn)BC上.若ADG、BED、CFG的面積分別是1、3、1,則正方形的邊長為(

A. B. C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從相距420kmAB兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達C地后因有事立即按原路原速返回A地,乙車從B地直達A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:

1)甲車的速度是   千米/時,乙車的速度是   千米/時;

2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關(guān)系式;

3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線x0)相交于AB兩點,與x軸相交于C點,△BOC的面積是.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線x0)的交點有( )

A. 0B. 1C. 2D. 0個,或1個,或2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:一般情形下等式1不成立,但有些特殊實數(shù)可以使它成立,例如:x2,y2時,1成立,我們稱(22)是使1成立的神奇數(shù)對.請完成下列問題:

1)數(shù)對(4),(1,1)中,使1成立的神奇數(shù)對   

2)若(5t,5+t)是使1成立的神奇數(shù)對,求t的值;

3)若(m,n)是使1成立的神奇數(shù)對,且ab+m,bc+n,求代數(shù)式(ac212ab)(bc)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線ACBD交于點ODEACBA的延長線于點E

1)求證:BDDE;

2)若∠ACB30°,BD8,求四邊形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形有一個銳角為60°,一條對角線長為4cm,則其面積為_______ cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點A,交x軸于點B(﹣5,0)和點C(1,0),過點AADx軸交拋物線于點D.

(1)求此拋物線的表達式;

(2)點E是拋物線上一點,且點E關(guān)于x軸的對稱點在直線AD上,求△EAD的面積;

(3)若點P是直線AB下方的拋物線上一動點,當(dāng)點P運動到某一位置時,△ABP的面積最大,求出此時點P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

同步練習(xí)冊答案