【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( 。
A.8.1米
B.17.2米
C.19.7米
D.25.5米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x,y軸上,點(diǎn)D在第一象限內(nèi),DC⊥x軸于點(diǎn)C,AO=CD=2,AB=DA= ,反比例函數(shù)y= (k>0)的圖像過CD的中點(diǎn)E.
(1)求k的值;
(2)△BFG和△DCA關(guān)于某點(diǎn)成中心對稱,其中點(diǎn)F在y軸上,試判斷點(diǎn)G是否在反比例函數(shù)的圖像上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以1厘米/秒的速度沿BC方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以2厘米/秒的速度沿CD方向運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)求線段CD的長。
(2)t為何值時(shí),線段PQ將四邊形ABCD的面積分為1:2兩部分?
(3)伴隨P,Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線為l.
①t為何值時(shí),l經(jīng)過點(diǎn)C?
②求當(dāng)l經(jīng)過點(diǎn)D時(shí)t的值,并求出此時(shí)刻線段PQ的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
A.30.6
B.32.1
C.37.9
D.39.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC= .
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最大值與最小值的和是( 。
A.6
B.2 +1
C.9
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y= (n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫出不等式;kx+b≤ 的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com