【題目】如圖,在平面直角坐標(biāo)系中,A1B1C1,A2B2C2,A3B3C3,,AnBnCn均為等腰直角三角形,且C1C2C3Cn90°,點A1,A2,A3,,An和點B1,B2B3,Bn分別在正比例函數(shù)yxy=﹣x的圖象上,且點A1,A2,A3,An的橫坐標(biāo)分別為12,3…n,線段A1B1,A2B2A3B3,,AnBn均與y軸平行.按照圖中所反映的規(guī)律,則AnBnCn的頂點Cn的坐標(biāo)是____.(其中n為正整數(shù))

【答案】,

【解析】

先求出A11,),B11,-1),得出A1B1=--1=,根據(jù)等腰直角三角形的性質(zhì)求出C1的坐標(biāo),再分別求出C2、C3、C4的坐標(biāo),得出規(guī)律,進而求出Cn的坐標(biāo);

解:∵x=1時,y=x=,y=-x=-1

A11,),B11,-1

A1B1=--1=,

∵△A1B1C1為等腰直角三角形,

C1的橫坐標(biāo)是1+A1B1=

C1的縱坐標(biāo)是-1+A1B1=,

C1的坐標(biāo)是();

x=2時,y=x=1,y=-x=-2

A22,1),B22,-2),

A2B2=1--2=3,

A2B2C2為等腰直角三角形,

C2的橫坐標(biāo)是2+A2B2=,C2的縱坐標(biāo)是-2+A2B2=-,

C2的坐標(biāo)是(,-);

同理,可得C3的坐標(biāo)是(,-);C4的坐標(biāo)是(7-1);

∴△AnBnCn的頂點Cn的坐標(biāo)是(-);

故答案為:(,-);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD各頂點的坐標(biāo)分別為A2,6),B4,2),C6,2),D6,4),

①在第一象限內(nèi),畫出以原點為位似中心,相似比為的位似圖形A1B1C1D1;

②將四邊形A1B1C1D1向右平移5個單位長度,再向上平移4個單位長度,并寫出各點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察等式:;已知按一定規(guī)律排列的一組數(shù):、、、、、.若,用含的式子表示這組數(shù)的和是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.

(1)求拋物線的函數(shù)表達式;

(2)點D為直線AC上方拋物線上一動點;

①連接BC、CD,設(shè)直線BD交線段AC于點E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;

②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線,過點和點,與y軸交于點C,連接ACx軸于點D,連接OA,OB

求拋物線的函數(shù)表達式;

求點D的坐標(biāo);

的大小是______;

繞點O旋轉(zhuǎn),旋轉(zhuǎn)后點C的對應(yīng)點是點,點D的對應(yīng)點是點,直線與直線交于點M,在旋轉(zhuǎn)過程中,當(dāng)點M與點重合時,請直接寫出點MAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售學(xué)習(xí)用品,已知某品牌鋼筆的進價是20元,銷售過程發(fā)現(xiàn),每月銷量y支與銷售單價x元(x為正整數(shù))之間滿足一次函數(shù)關(guān)系,且每支鋼筆的售價不低于進價,也不高于35元,下表是yx之間的對應(yīng)數(shù)據(jù):

銷售單價x(元)

22

24

30

月銷量y(只)

92

84

60

1)求yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.

2)每支鋼筆的售價定為多少元時,月銷售利潤恰為600元?

3)每支鋼筆的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】很多交通事故是由于超速行駛導(dǎo)致的,為集中治理超速現(xiàn)象,高速交警在距離高速路40米的地方設(shè)置了一個測速觀察點,現(xiàn)測得測速點的西北方向有一輛小型轎車從B處沿西向正東方向行駛,2秒鐘后到達測速點北偏東的方向上的C處,如圖.

1)求該小型轎車在測速過程中的平均行駛速度約是多少千米/時(精確到1千米/時)?

(參考數(shù)據(jù):

2)我國交通法規(guī)定:小轎車在高速路行駛,時速超過限定速度10%以上不到50%的處200元罰款,扣3分;時速超過限定速度50%以上不到70%的處1500元罰款,扣12分;時速超過限定時速70%以上的處1500元罰款,扣12分.若該高速路段限速120千米/時,你認(rèn)為該小轎車駕駛員會受到怎樣的處罰.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學(xué)共有  人;

2)補全條形統(tǒng)計圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)扇形統(tǒng)計圖中圓心角α  度;

4)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過A(﹣1,0),B4,0),C0,2)三點.

1)求該二次函數(shù)的解析式;

2)設(shè)點D是在x軸上方的二次函數(shù)圖象上的點,且△DAB的面積為5,求出所有滿足條件的點D的坐標(biāo);

3)能否在拋物線上找點P,使∠APB90°?若能,請直接寫出所有滿足條件的點P;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案