【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為直線,則下列結(jié)論正確的是( )
A. B. 方程的兩個根是,
C. D. 當(dāng)時,隨的增大而增大
【答案】B
【解析】
由拋物線開口得a>0,由拋物線與y軸的交點(diǎn)位置c<0,則可對A進(jìn)行判斷;由于拋物線的對稱軸為直線x=1,則點(diǎn)(3,0)關(guān)于直線x=1的對稱點(diǎn)為(1,0),于是得到拋物線與x軸交點(diǎn)坐標(biāo)為(1,0)和(3,0),則可對B進(jìn)行判斷;根據(jù)拋物線的對稱軸為直線x==1,則可對C進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)可對D進(jìn)行判斷.
A、拋物線開口向上,則a>0,拋物線與y軸的交點(diǎn)在x軸下方,則c<0,所以ac<0,所以A選項(xiàng)錯誤;
B、拋物線的對稱軸為直線x=1,點(diǎn)(3,0)關(guān)于直線x=1的對稱點(diǎn)為(1,0),則方程ax2+bx+c=0的兩個根是x1=1,x2=3,所以B選項(xiàng)正確;
C、拋物線的對稱軸為直線x==1,則b=2a,即2a+b=0,所以C選項(xiàng)錯誤;
D、當(dāng)0<x<1,y隨x的增大而減;x>1時,y隨x的增大而增大,所以D選項(xiàng)錯誤.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是邊上的一點(diǎn),是的中點(diǎn),過點(diǎn)作的平行線交的延長線于點(diǎn),且,連接.
與有什么數(shù)量關(guān)系,并說明理由;
①當(dāng)滿足什么條件時,四邊形是矩形?并說明理由.
②當(dāng)滿足什么條件時,四邊形是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,∠C=90°.
(1)CD與⊙O有怎樣的位置關(guān)系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,延長平行四邊形的邊到,使,連結(jié)交于點(diǎn).
試說明:;
連結(jié),相交于,連結(jié),問與有怎樣的數(shù)量關(guān)系與位置關(guān)系,說明理由;
若,連接,四邊形是什么特殊四邊形,說明理由;
在的條件下,當(dāng)滿足________條件時,四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想三角形外心的概念,我們可引入如下概念:到三角形的兩個頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.例:已知,則點(diǎn)為的準(zhǔn)外心(如圖).
如圖,為正三角形的高,準(zhǔn)外心在高上,且,求的度數(shù).
如圖,若為直角三角形,,,,準(zhǔn)外心在邊上,試探究的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知一個正多邊形的每個內(nèi)角比它的每個外角的4倍多30°,求這個多邊形的邊數(shù);
(2)一個多邊形的外角和是內(nèi)角和的,求這個多邊形的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的、兩個頂點(diǎn)在軸上,頂點(diǎn)在軸的負(fù)半軸上.已知,,的面積,拋物線經(jīng)過、、三點(diǎn).
求此拋物線的函數(shù)表達(dá)式;
點(diǎn)是拋物線對稱軸上的一點(diǎn),在線段上有一動點(diǎn),以每秒個單位的速度從向運(yùn)動,(不與點(diǎn),重合),過點(diǎn)作,交軸于點(diǎn),設(shè)點(diǎn)的運(yùn)動時間為秒,試把的面積表示成的函數(shù),當(dāng)為何值時,有最大值,并求出最大值;
設(shè)點(diǎn)是拋物線上異于點(diǎn),的一個動點(diǎn),過點(diǎn)作軸的平行線交拋物線于另一點(diǎn).以為直徑畫,則在點(diǎn)的運(yùn)動過程中,是否存在與軸相切的?若存在,求出此時點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,、為對角線,點(diǎn)、、、分別為、、、邊的中點(diǎn),下列說法:
①當(dāng)時,、、、四點(diǎn)共圓.
②當(dāng)時,、、、四點(diǎn)共圓.
③當(dāng)且時,、、、四點(diǎn)共圓.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點(diǎn),連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是 ;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com